Frontiers of Structural and Civil Engineering最新文献

筛选
英文 中文
Multi-population particle swarm optimization algorithm for automatic design of steel frames 用于钢架自动设计的多群体粒子群优化算法
IF 3 3区 工程技术
Frontiers of Structural and Civil Engineering Pub Date : 2024-05-14 DOI: 10.1007/s11709-024-1037-7
Wenchen Shan, Jiepeng Liu, Yao Ding, Y. Frank Chen, Junwen Zhou
{"title":"Multi-population particle swarm optimization algorithm for automatic design of steel frames","authors":"Wenchen Shan, Jiepeng Liu, Yao Ding, Y. Frank Chen, Junwen Zhou","doi":"10.1007/s11709-024-1037-7","DOIUrl":"https://doi.org/10.1007/s11709-024-1037-7","url":null,"abstract":"<p>Steel structures are widely used; however, their traditional design method is a trial-and-error procedure which is neither efficient nor cost effective. Therefore, a multi-population particle swarm optimization (MPPSO) algorithm is developed to optimize the weight of steel frames according to standard design codes. Modifications are made to improve the algorithm performances including the constraint-based strategy, piecewise mean learning strategy and multi-population cooperative strategy. The proposed method is tested against the representative frame taken from American standards and against other steel frames matching Chinese design codes. The related parameter influences on optimization results are discussed. For the representative frame, MPPSO can achieve greater efficiency through reduction of the number of analyses by more than 65% and can obtain frame with the weight for at least 2.4% lighter. A similar trend can also be observed in cases subjected to Chinese design codes. In addition, a migration interval of 1 and the number of populations as 5 are recommended to obtain better MPPSO results. The purpose of the study is to propose a method with high efficiency and robustness that is not confined to structural scales and design codes. It aims to provide a reference for automatic structural optimization design problems even with dimensional complexity. The proposed method can be easily generalized to the optimization problem of other structural systems.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of shallow buried large-span metro stations using the small pipe roof-beam method 采用小管顶梁法建造浅埋大跨度地铁车站
IF 3 3区 工程技术
Frontiers of Structural and Civil Engineering Pub Date : 2024-05-09 DOI: 10.1007/s11709-024-1008-z
Qian Bai, Wen Zhao, Yingda Zhang, Pengjiao Jia, Xiangrui Meng, Bo Lu, Xin Wang, Dazeng Sun
{"title":"Construction of shallow buried large-span metro stations using the small pipe roof-beam method","authors":"Qian Bai, Wen Zhao, Yingda Zhang, Pengjiao Jia, Xiangrui Meng, Bo Lu, Xin Wang, Dazeng Sun","doi":"10.1007/s11709-024-1008-z","DOIUrl":"https://doi.org/10.1007/s11709-024-1008-z","url":null,"abstract":"<p>In relation to the Shifu Road Station project on Line 4 of the Shenyang Metro in China, a small-pipe roof-beam method for constructing subway stations is presented. First, a numerical simulation was performed to optimize the supporting parameters of the proposed method and determine the design scheme. Subsequently, the deformation of the pipe roof and surface settlement during the construction process were investigated. Finally, the surface settlement attributed to the excavation was studied through field monitoring, and the proposed method was compared with other methods. The results show that an increase in the pipe-roof spacing has little effect on the surface settlement and pipe-roof deformation. The bearing capacity of the pipe roof can be efficiently utilized once the flexural stiffness reaches 2<i>EI</i>, and the flexural stiffness is not the dominant factor controlling the deformation. The essential stages in controlling surface settlement are the excavations of the transverse pilot tunnels and the soil between them. The final settlement value of the ground was 24.1 mm, resulting in a reduction in the construction period by at least five months while satisfying the control requirements.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive comparison of different regression techniques and nature-inspired optimization algorithms to predict carbonation depth of recycled aggregate concrete 预测再生骨料混凝土碳化深度的不同回归技术和自然启发优化算法的综合比较
IF 3 3区 工程技术
Frontiers of Structural and Civil Engineering Pub Date : 2024-05-09 DOI: 10.1007/s11709-024-1041-y
Bin Xi, Ning Zhang, Enming Li, Jiabin Li, Jian Zhou, Pablo Segarra
{"title":"A comprehensive comparison of different regression techniques and nature-inspired optimization algorithms to predict carbonation depth of recycled aggregate concrete","authors":"Bin Xi, Ning Zhang, Enming Li, Jiabin Li, Jian Zhou, Pablo Segarra","doi":"10.1007/s11709-024-1041-y","DOIUrl":"https://doi.org/10.1007/s11709-024-1041-y","url":null,"abstract":"<p>The utilization of recycled aggregates (RA) for concrete production has the potential to offer substantial environmental and economic advantages. However, RA concrete is plagued with considerable durability concerns, particularly carbonation. To advance the application of RA concrete, the establishment of a reliable model for predicting the carbonation is needed. On the one hand, concrete carbonation is a long and slow process and thus consumes a lot of time and energy to monitor. On the other hand, carbonation is influenced by many factors and is hard to predict. Regarding this, this paper proposes the use of machine learning techniques to establish accurate prediction models for the carbonation depth (<i>CD</i>) of RA concrete. Three types of regression techniques and meta-heuristic algorithms were employed to provide more alternative predictive tools. It was found that the best prediction performance was obtained from extreme gradient boosting-multi-universe optimizer (XGB-MVO) with <i>R</i><sup>2</sup> value of 0.9949 and 0.9398 for training and testing sets, respectively. XGB-MVO was used for evaluating physical laws of carbonation and it was found that the developed XGB-MVO model could provide reasonable predictions when new data were investigated. It also showed better generalization capabilities when compared with different models in the literature. Overall, this paper emphasizes the need for sustainable solutions in the construction industry to reduce its environmental impact and contribute to sustainable and low-carbon economies.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial-inspired self-healing of concrete cracks by sodium silicate-coated recycled concrete aggregates served as bacterial carrier 以硅酸钠涂层再生混凝土骨料为细菌载体,在微生物启发下实现混凝土裂缝自愈合
IF 3 3区 工程技术
Frontiers of Structural and Civil Engineering Pub Date : 2024-05-09 DOI: 10.1007/s11709-023-0993-7
Jing Xu, Xianzhi Wang, Wu Yao, Anna A. Kulminskaya, Surendra P. Shah
{"title":"Microbial-inspired self-healing of concrete cracks by sodium silicate-coated recycled concrete aggregates served as bacterial carrier","authors":"Jing Xu, Xianzhi Wang, Wu Yao, Anna A. Kulminskaya, Surendra P. Shah","doi":"10.1007/s11709-023-0993-7","DOIUrl":"https://doi.org/10.1007/s11709-023-0993-7","url":null,"abstract":"<p>Microbially induced carbonate precipitation (MICP) is a promising technique for the autonomous healing of concrete cracks. In this study, the effect of pH on MICP was investigated. The results indicate that the MICP process was inhibited when the pH was higher than 11. Both vaterite and calcite were produced when the pH was &lt; 8, whereas only calcite was produced when the pH was &gt; 8. Recycled concrete aggregates (RCA) coated with sodium silicate have been proposed as protective carriers for microbial healing agents. Although the presence of the coated RCA resulted in a loss of the splitting tension strength of the concrete, the loaded healing agents were highly efficient in self-healing cracks. Concrete incorporated with 20% RCA loaded with healing agents exhibited the best self-healing performance. When the initial crack widths were between 0.3 and 0.4 mm, the 7-d mean healing rate was approximately 90%. At 28 d, the crack area filling ratio was 86.4%, while its water tightness recovery ratio was 74.4% and 29.8%, respectively, for rapid and slow absorption. This study suggests that RCA coated with sodium silicate is an effective method for packaging microbial healing agents and has great potential for developing cost-effective self-healing concrete.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interface failure of segmental tunnel lining strengthened with steel plates based on fracture mechanics 基于断裂力学的用钢板加固的分段式隧道衬砌的界面破坏
IF 3 3区 工程技术
Frontiers of Structural and Civil Engineering Pub Date : 2024-05-09 DOI: 10.1007/s11709-024-1019-9
Yazhen Sun, Yang Yu, Jinchang Wang, Longyan Wang
{"title":"Interface failure of segmental tunnel lining strengthened with steel plates based on fracture mechanics","authors":"Yazhen Sun, Yang Yu, Jinchang Wang, Longyan Wang","doi":"10.1007/s11709-024-1019-9","DOIUrl":"https://doi.org/10.1007/s11709-024-1019-9","url":null,"abstract":"<p>Segmental tunnel lining strengthened with steel plates is widely used worldwide to provide a permanent strengthening method. Most existing studies assume an ideal steel-concrete interface, ignoring discontinuous deformation characteristics, making it difficult to accurately analyze the strengthened structure’s failure mechanism. In this study, interfacial fracture mechanics of composite material was applied to the segmental tunnel lining strengthened with steel plates, and a numerical three-dimensional solid nonlinear model of the lining structure was established, combining the extended finite element method with a cohesive-zone model to account for the discontinuous deformation characteristics of the interface. The results accurately describe the crack propagation process, and are verified by full-scale testing. Next, dynamic simulations based on the calibrated model were conducted to analyze the sliding failure and cracking of the steel-concrete interface. Lastly, detailed location of the interface bonding failure are further verified by model test. The results show that, the cracking failure and bond failure of the interface are the decisive factors determining the instability and failure of the strengthened structure. The proposed numerical analysis is a major step forward in revealing the interface failure mechanism of strengthened composite material structures.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An extended numerical model of the first exothermic peak for three dimensional printed cement-based materials 三维印刷水泥基材料第一个放热峰的扩展数值模型
IF 3 3区 工程技术
Frontiers of Structural and Civil Engineering Pub Date : 2024-05-09 DOI: 10.1007/s11709-024-1036-8
Wei Jiang, Wenqian Li, Xi Chen
{"title":"An extended numerical model of the first exothermic peak for three dimensional printed cement-based materials","authors":"Wei Jiang, Wenqian Li, Xi Chen","doi":"10.1007/s11709-024-1036-8","DOIUrl":"https://doi.org/10.1007/s11709-024-1036-8","url":null,"abstract":"<p>The first exothermic peak of cement-based material occurs a few minutes after mixing, and the properties of three dimensional (3D) printed concrete, such as setting time, are very sensitive to this. Against this background, based on the classical Park cement exothermic model of hydration, we propose and construct a numerical model of the first exothermic peak, taking into account the proportions of C<sub>3</sub>S, C<sub>3</sub>A and quicklime in particular. The calculated parameters are calibrated by means of relevant published exothermic test data. It is found that this developed model offers a good simulation of the first exothermic peak of hydration for C<sub>3</sub>S and C<sub>3</sub>A proportions from 0 to 100% of cement clinker and reflects the effect of quicklime content at 8%–10%. The unique value of this research is provision of an important computational tool for applications that are sensitive to the first exothermic peak of hydration, such as 3D printing.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The shear strength of the interface between artificial rock and printed concrete at super-early ages 人工岩石与印模混凝土界面在超早期龄期的抗剪强度
IF 3 3区 工程技术
Frontiers of Structural and Civil Engineering Pub Date : 2024-05-09 DOI: 10.1007/s11709-024-1012-3
Yong Yuan, Xiaoyun Wang, Jiao-Long Zhang, Yaxin Tao, Kim Van Tittelboom, Luc Taerwe, Geert De Schutter
{"title":"The shear strength of the interface between artificial rock and printed concrete at super-early ages","authors":"Yong Yuan, Xiaoyun Wang, Jiao-Long Zhang, Yaxin Tao, Kim Van Tittelboom, Luc Taerwe, Geert De Schutter","doi":"10.1007/s11709-024-1012-3","DOIUrl":"https://doi.org/10.1007/s11709-024-1012-3","url":null,"abstract":"<p>3D concrete printing has the potential to replace shotcrete for construction of linings of tunnels in hard rock. The shear strength of the interface between rock and printed concrete is vital, especially at super-early ages. However, traditional methods for testing the shear strength of the interface, e.g., the direct shear test, are time-consuming and result in a high variability for fast-hardening printed concrete. In this paper, a new fast bond shear test is proposed. Each test can be completed in 1 min, with another 2 min for preparing the next test. The influence of the matrix composition, the age of the printed matrices, and the interface roughness of the artificial rock substrate on the shear strength of the interface was experimentally studied. The tests were conducted at the age of the matrices at the 1st, the 4th, the 8th, the 16th, the 32nd, and the 64th min after its final setting. A dimensionless formula was established to calculate the shear strength, accounting for the age of the printed matrices, the interface roughness, and the shear failure modes. It was validated by comparing the calculated results and the experimental results of one group of samples.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale analysis-based peridynamic simulation of fracture in porous media 基于多尺度分析的多孔介质断裂周动力学模拟
IF 3 3区 工程技术
Frontiers of Structural and Civil Engineering Pub Date : 2024-05-09 DOI: 10.1007/s11709-024-1043-9
Zihao Yang, Shangkun Shen, Xiaofei Guan, Xindang He, Junzhi Cui
{"title":"Multiscale analysis-based peridynamic simulation of fracture in porous media","authors":"Zihao Yang, Shangkun Shen, Xiaofei Guan, Xindang He, Junzhi Cui","doi":"10.1007/s11709-024-1043-9","DOIUrl":"https://doi.org/10.1007/s11709-024-1043-9","url":null,"abstract":"<p>The simulation of fracture in large-scale structures made of porous media remains a challenging task. Current techniques either assume a homogeneous model, disregarding the microstructure characteristics, or adopt a micro-mechanical model, which incurs an intractable computational cost due to its complex stochastic geometry and physical properties, as well as its nonlinear and multiscale features. In this study, we propose a multiscale analysis-based dual-variable-horizon peridynamics (PD) model to efficiently simulate macroscopic structural fracture. The influence of microstructures in porous media on macroscopic structural failure is represented by two PD parameters: the equivalent critical stretch and micro-modulus. The equivalent critical stretch is calculated using the microscale PD model, while the equivalent micro-modulus is obtained through the homogenization method and energy density equivalence between classical continuum mechanics and PD models. Numerical examples of porous media with various microstructures demonstrate the validity, accuracy, and efficiency of the proposed method.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new neural-network-based method for structural damage identification in single-layer reticulated shells 基于神经网络的单层网壳结构损伤识别新方法
IF 3 3区 工程技术
Frontiers of Structural and Civil Engineering Pub Date : 2024-05-09 DOI: 10.1007/s11709-024-1031-0
Jindong Zhang, Xiaonong Guo, Shaohan Zong, Yujian Zhang
{"title":"A new neural-network-based method for structural damage identification in single-layer reticulated shells","authors":"Jindong Zhang, Xiaonong Guo, Shaohan Zong, Yujian Zhang","doi":"10.1007/s11709-024-1031-0","DOIUrl":"https://doi.org/10.1007/s11709-024-1031-0","url":null,"abstract":"<p>Single-layer reticulated shells (SLRSs) find widespread application in the roofs of crucial public structures, such as gymnasiums and exhibition center. In this paper, a new neural-network-based method for structural damage identification in SLRSs is proposed. First, a damage vector index, <b><i>NDL</i></b>, that is related only to the damage localization, is proposed for SLRSs, and a damage data set is constructed from <b><i>NDL</i></b> data. On the basis of visualization of the <b><i>NDL</i></b> damage data set, the structural damaged region locations are identified using convolutional neural networks (CNNs). By cross-dividing the damaged region locations and using parallel CNNs for each regional location, the damaged region locations can be quickly and efficiently identified and the undamaged region locations can be eliminated. Second, a damage vector index, DS, that is related to the damage location and damage degree, is proposed for SLRSs. Based on the damaged region identified previously, a fully connected neural network (FCNN) is constructed to identify the location and damage degree of members. The effectiveness and reliability of the proposed method are verified by considering a numerical case of a spherical SLRS. The calculation results showed that the proposed method can quickly eliminate candidate locations of potential damaged region locations and precisely determine the location and damage degree of members.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 3D sliced-soil–beam model for settlement prediction of tunnelling using the pipe roofing method in soft ground 三维切片土梁模型,用于在软土地基上使用管顶法进行隧道沉降预测
IF 3 3区 工程技术
Frontiers of Structural and Civil Engineering Pub Date : 2024-02-02 DOI: 10.1007/s11709-023-0038-2
Yu Diao, Yiming Xue, Weiqiang Pan, Gang Zheng, Ying Zhang, Dawei Zhang, Haizuo Zhou, Tianqi Zhang
{"title":"A 3D sliced-soil–beam model for settlement prediction of tunnelling using the pipe roofing method in soft ground","authors":"Yu Diao, Yiming Xue, Weiqiang Pan, Gang Zheng, Ying Zhang, Dawei Zhang, Haizuo Zhou, Tianqi Zhang","doi":"10.1007/s11709-023-0038-2","DOIUrl":"https://doi.org/10.1007/s11709-023-0038-2","url":null,"abstract":"<p>The pipe roofing method is widely used in tunnel construction because it can realize a flexible section shape and a large section area of the tunnel, especially under good ground conditions. However, the pipe roofing method has rarely been applied in soft ground, where the prediction and control of the ground settlement play important roles. This study proposes a sliced-soil–beam (SSB) model to predict the settlement of ground due to tunnelling using the pipe roofing method in soft ground. The model comprises a sliced-soil module based on the virtual work principle and a beam module based on structural mechanics. As part of this work, the Peck formula was modified for a square-section tunnel and adopted to construct a deformation mechanism of soft ground. The pipe roofing system was simplified to a three-dimensional Winkler beam to consider the interaction between the soil and pipe roofing. The model was verified in a case study conducted in Shanghai, China, in which it provided the efficient and accurate prediction of settlement. Finally, the parameters affecting the ground settlement were analyzed. It was clarified that the stiffness of the excavated soil and the steel support are the key factors in reducing ground settlement.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139663145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信