{"title":"可持续高性能各向异性三维可打印混凝土的力学行为和渗透特性","authors":"Fatih Özalp","doi":"10.1007/s11709-023-0962-1","DOIUrl":null,"url":null,"abstract":"<p>Three-dimensional printable concrete requires further development owing to the challenges encountered, including its brittle behavior, high cement requirement for the buildability of layers, and anisotropic behavior in different directions. The aim of this study is to overcome these challenges. First, three-dimensional printable concrete mixtures were prepared using silica fume, ground blast furnace slag, and metakaolin, instead of cement, to reduce the amount of cement. Subsequently, the rheological and mechanical behaviors of these concretes were investigated. Second, three-dimensional printable concrete mixtures were prepared using 6-mm-long steel and synthetic fibers to eliminate brittleness and determine the effect of those fibers on the anisotropic behavior of the concrete. As a result of this study, it is understood that printable concretes with extremely low permeability and high buildability can be achieved using mineral additives. In addition, results showed that three-dimensional concrete samples containing short steel fibers achieve fracture energies up to 36 times greater than that of plain concrete. Meanwhile, its characteristic length values, as indicators of ductility, are 22 times higher than those of plain concrete. The weakest strength was recorded at the interfaces between layers. The bending and splitting tensile strengths of three-dimensional printed plain concrete samples were 15% and 19% lower than those of casted samples, respectively. However, the addition of fibers improved the mechanical strength of the interfaces significantly.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"45 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical behavior and permeability properties of sustainable and high-performance anisotropic three-dimensional printable concrete\",\"authors\":\"Fatih Özalp\",\"doi\":\"10.1007/s11709-023-0962-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Three-dimensional printable concrete requires further development owing to the challenges encountered, including its brittle behavior, high cement requirement for the buildability of layers, and anisotropic behavior in different directions. The aim of this study is to overcome these challenges. First, three-dimensional printable concrete mixtures were prepared using silica fume, ground blast furnace slag, and metakaolin, instead of cement, to reduce the amount of cement. Subsequently, the rheological and mechanical behaviors of these concretes were investigated. Second, three-dimensional printable concrete mixtures were prepared using 6-mm-long steel and synthetic fibers to eliminate brittleness and determine the effect of those fibers on the anisotropic behavior of the concrete. As a result of this study, it is understood that printable concretes with extremely low permeability and high buildability can be achieved using mineral additives. In addition, results showed that three-dimensional concrete samples containing short steel fibers achieve fracture energies up to 36 times greater than that of plain concrete. Meanwhile, its characteristic length values, as indicators of ductility, are 22 times higher than those of plain concrete. The weakest strength was recorded at the interfaces between layers. The bending and splitting tensile strengths of three-dimensional printed plain concrete samples were 15% and 19% lower than those of casted samples, respectively. However, the addition of fibers improved the mechanical strength of the interfaces significantly.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-023-0962-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-023-0962-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Mechanical behavior and permeability properties of sustainable and high-performance anisotropic three-dimensional printable concrete
Three-dimensional printable concrete requires further development owing to the challenges encountered, including its brittle behavior, high cement requirement for the buildability of layers, and anisotropic behavior in different directions. The aim of this study is to overcome these challenges. First, three-dimensional printable concrete mixtures were prepared using silica fume, ground blast furnace slag, and metakaolin, instead of cement, to reduce the amount of cement. Subsequently, the rheological and mechanical behaviors of these concretes were investigated. Second, three-dimensional printable concrete mixtures were prepared using 6-mm-long steel and synthetic fibers to eliminate brittleness and determine the effect of those fibers on the anisotropic behavior of the concrete. As a result of this study, it is understood that printable concretes with extremely low permeability and high buildability can be achieved using mineral additives. In addition, results showed that three-dimensional concrete samples containing short steel fibers achieve fracture energies up to 36 times greater than that of plain concrete. Meanwhile, its characteristic length values, as indicators of ductility, are 22 times higher than those of plain concrete. The weakest strength was recorded at the interfaces between layers. The bending and splitting tensile strengths of three-dimensional printed plain concrete samples were 15% and 19% lower than those of casted samples, respectively. However, the addition of fibers improved the mechanical strength of the interfaces significantly.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.