Numerical simulation of rime ice accretion on a three-dimensional wind turbine blade using a Lagrangian approach

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL
Tiange Zhang, Xuanyi Zhou, Zhenbiao Liu
{"title":"Numerical simulation of rime ice accretion on a three-dimensional wind turbine blade using a Lagrangian approach","authors":"Tiange Zhang, Xuanyi Zhou, Zhenbiao Liu","doi":"10.1007/s11709-023-0971-0","DOIUrl":null,"url":null,"abstract":"<p>The accreted ice on wind turbine blades significantly deteriorates the blade aerodynamic performance and consequently the power production. The existing numerical simulations of blade icing have mostly been performed with the Eulerian approach for two-dimensional (2D) blade profiles, neglecting the possible three-dimensional (3D) rotating effect. This paper conducts a numerical simulation of rime ice accretion on a 3D wind turbine blade using the Lagrangian approach. The simulation results are validated through previously published experimental data. The icing characteristics along the blade radial direction are then investigated in detail. Significant radial airflow along the blade is observed, which demonstrates the necessity of 3D simulation. In addition, more droplets are found to impinge on the blade surface near the tip region, thereby producing severer ice accretion there. The accreted ice increases almost linearly along the blade radial direction in terms of both ice mass and maximum ice thickness.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"113 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-023-0971-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The accreted ice on wind turbine blades significantly deteriorates the blade aerodynamic performance and consequently the power production. The existing numerical simulations of blade icing have mostly been performed with the Eulerian approach for two-dimensional (2D) blade profiles, neglecting the possible three-dimensional (3D) rotating effect. This paper conducts a numerical simulation of rime ice accretion on a 3D wind turbine blade using the Lagrangian approach. The simulation results are validated through previously published experimental data. The icing characteristics along the blade radial direction are then investigated in detail. Significant radial airflow along the blade is observed, which demonstrates the necessity of 3D simulation. In addition, more droplets are found to impinge on the blade surface near the tip region, thereby producing severer ice accretion there. The accreted ice increases almost linearly along the blade radial direction in terms of both ice mass and maximum ice thickness.

使用拉格朗日方法对三维风力涡轮机叶片上的浮冰积聚进行数值模拟
风力涡轮机叶片上的积冰会严重影响叶片的空气动力性能,进而影响发电量。现有的叶片结冰数值模拟大多采用欧拉方法对二维(2D)叶片剖面进行模拟,忽略了可能存在的三维(3D)旋转效应。本文采用拉格朗日方法对三维风力涡轮机叶片上的融冰进行了数值模拟。模拟结果通过之前公布的实验数据进行了验证。然后详细研究了沿叶片径向的结冰特征。观察到沿叶片有明显的径向气流,这证明了三维模拟的必要性。此外,还发现更多的液滴撞击叶尖附近的叶片表面,从而在那里产生更严重的积冰。就冰的质量和最大冰厚度而言,积冰沿叶片径向几乎呈线性增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信