Frontiers in Cellular Neuroscience最新文献

筛选
英文 中文
The intricate interplay between microglia and adult neurogenesis in Alzheimer’s disease 阿尔茨海默病中小胶质细胞与成体神经发生之间错综复杂的相互作用
IF 5.3 3区 医学
Frontiers in Cellular Neuroscience Pub Date : 2024-09-18 DOI: 10.3389/fncel.2024.1456253
Iris Früholz, Melanie Meyer-Luehmann
{"title":"The intricate interplay between microglia and adult neurogenesis in Alzheimer’s disease","authors":"Iris Früholz, Melanie Meyer-Luehmann","doi":"10.3389/fncel.2024.1456253","DOIUrl":"https://doi.org/10.3389/fncel.2024.1456253","url":null,"abstract":"Microglia, the resident immune cells of the central nervous system, play a crucial role in regulating adult neurogenesis and contribute significantly to the pathogenesis of Alzheimer’s disease (AD). Under physiological conditions, microglia support and modulate neurogenesis through the secretion of neurotrophic factors, phagocytosis of apoptotic cells, and synaptic pruning, thereby promoting the proliferation, differentiation, and survival of neural progenitor cells (NPCs). However, in AD, microglial function becomes dysregulated, leading to chronic neuroinflammation and impaired neurogenesis. This review explores the intricate interplay between microglia and adult neurogenesis in health and AD, synthesizing recent findings to provide a comprehensive overview of the current understanding of microglia-mediated regulation of adult neurogenesis. Furthermore, it highlights the potential of microglia-targeted therapies to modulate neurogenesis and offers insights into potential avenues for developing novel therapeutic interventions.","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"19 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combinatorial protection of cochlear hair cells: not too little but not too much 耳蜗毛细胞的组合保护:不能太少也不能太多
IF 5.3 3区 医学
Frontiers in Cellular Neuroscience Pub Date : 2024-09-18 DOI: 10.3389/fncel.2024.1458720
Arwa Kurabi, Kwang Pak, Eun Jung Lee, Allen F. Ryan
{"title":"Combinatorial protection of cochlear hair cells: not too little but not too much","authors":"Arwa Kurabi, Kwang Pak, Eun Jung Lee, Allen F. Ryan","doi":"10.3389/fncel.2024.1458720","DOIUrl":"https://doi.org/10.3389/fncel.2024.1458720","url":null,"abstract":"BackgroundA number of drugs are toxic to the cochlear sensory cells known as hair cells (HCs), resulting in hearing loss. Treatment with survival-promoting growth factors, antioxidants, and inhibitors of cell death pathways or proteinases have been shown to reduce HC damage in <jats:italic>in vivo</jats:italic> and/or <jats:italic>in vitro</jats:italic> animal models. Conversely, translation to humans has often been disappointing. This may be due to the complexity of intracellular damage processes. We hypothesized that combining treatments targeting different cellular processes would be more effective.MethodsUsing an <jats:italic>in vitro</jats:italic> model of gentamicin ototoxicity for murine cochlear hair cells, we screened all 56 possible combinations of inhibitors targeting five different cell damage mechanisms, plus the activator of one cell survival pathway, each of which have been shown to be singly effective in preventing HC loss in experimental studies. A high dose of gentamicin (200 μM) was used over three days in culture. All compounds were added at a dosage below that required for significant protection in the assay, and only this single dose was then employed. This was done so that we could more easily detect interactive, as opposed to additive, effects.ResultsIncreasing protection of hair cells was observed as combinations of compounds were increased from two to four factors, although not all combinations were equally protective. The optimal combination of four compounds consisted of an anti-oxidant, an apoptosis inhibitor, an autophagy inhibitor and a protective growth factor. Increasing the number of factors to five or six resulted in decreased protection.ConclusionThe results support the hypothesis that targeting multiple cellular damage or survival pathways provides more an effective hair cell protection approach. The results help to identify critical interactions among the cellular processes that operate in gentamicin ototoxicity. They also suggest that inhibiting too many biological processes impairs functions critical to HC survival, resulting in decreased protection.","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"58 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vasoactive intestinal peptide-expressing interneurons modulate the effect of behavioral state on cortical activity 表达血管活性肠肽的中间神经元调节行为状态对大脑皮层活动的影响
IF 5.3 3区 医学
Frontiers in Cellular Neuroscience Pub Date : 2024-09-12 DOI: 10.3389/fncel.2024.1465836
Ehsan Sabri, Renata Batista-Brito
{"title":"Vasoactive intestinal peptide-expressing interneurons modulate the effect of behavioral state on cortical activity","authors":"Ehsan Sabri, Renata Batista-Brito","doi":"10.3389/fncel.2024.1465836","DOIUrl":"https://doi.org/10.3389/fncel.2024.1465836","url":null,"abstract":"Animals live in a complex and changing environment with various degrees of behavioral demands. Behavioral states affect the activity of cortical neurons and the dynamics of neuronal populations, however not much is known about the cortical circuitry behind the modulation of neuronal activity across behavioral states. Here we show that a class of GABAergic inhibitory interneurons that express vasoactive intestinal peptide-expressing interneurons (VIP), namely VIP interneurons, play a key role in the circuits involved in the modulation of cortical activity by behavioral state, as reflected in the mice facial motion. We show that inhibition of VIP interneurons reduces the correlated activity between the behavioral state of the animal and the spiking of individual neurons. We also show that VIP inhibition during the quiet state decreases the synchronous spiking of the neurons but increases delta power and phase locking of spiking to the delta-band activity. Taken together our data show that VIP interneurons modulate the behavioral state-dependency of cortical activity across different time scales.","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"13 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the interplay between segregation and integration in developing cortical assemblies 研究发育中的大脑皮层集合体中分离与整合之间的相互作用
IF 5.3 3区 医学
Frontiers in Cellular Neuroscience Pub Date : 2024-09-12 DOI: 10.3389/fncel.2024.1429329
Valerio Barabino, Ilaria Donati della Lunga, Francesca Callegari, Letizia Cerutti, Fabio Poggio, Mariateresa Tedesco, Paolo Massobrio, Martina Brofiga
{"title":"Investigating the interplay between segregation and integration in developing cortical assemblies","authors":"Valerio Barabino, Ilaria Donati della Lunga, Francesca Callegari, Letizia Cerutti, Fabio Poggio, Mariateresa Tedesco, Paolo Massobrio, Martina Brofiga","doi":"10.3389/fncel.2024.1429329","DOIUrl":"https://doi.org/10.3389/fncel.2024.1429329","url":null,"abstract":"IntroductionThe human brain is an intricate structure composed of interconnected modular networks, whose organization is known to balance the principles of segregation and integration, enabling rapid information exchange and the generation of coherent brain states. Segregation involves the specialization of brain regions for specific tasks, while integration facilitates communication among these regions, allowing for efficient information flow. Several factors influence this balance, including maturation, aging, and the insurgence of neurological disorders like epilepsy, stroke, or cancer. To gain insights into information processing and connectivity recovery, we devised a controllable <jats:italic>in vitro</jats:italic> model to mimic and investigate the effects of different segregation and integration ratios over time.MethodsWe designed a cross-shaped polymeric mask to initially establish four independent sub-populations of cortical neurons and analyzed how the timing of its removal affected network development. We evaluated the morphological and functional features of the networks from 11 to 18 days <jats:italic>in vitro</jats:italic> (DIVs) with immunofluorescence techniques and micro-electrode arrays (MEAs).ResultsThe removal of the mask at different developmental stages of the network lead to strong variations in the degree of intercommunication among the four assemblies (altering the segregation/integration balance), impacting firing and bursting parameters. Early removal (after 5 DIVs) resulted in networks with a level of integration similar to homogeneous controls (without physical constraints). In contrast, late removal (after 15 DIVs) hindered the formation of strong inter-compartment connectivity, leading to more clustered and segregated assemblies.DiscussionA critical balance between segregation and integration was observed when the mask was removed at DIV 10, allowing for the formation of a strong connectivity among the still-separated compartments, thus demonstrating the existence of a time window in network development in which it is possible to achieve a balance between segregation and integration.","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"9 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystallin β-b2 promotes retinal ganglion cell protection in experimental autoimmune uveoretinitis 晶体蛋白β-b2促进实验性自身免疫性葡萄膜视网膜炎视网膜神经节细胞的保护
IF 5.3 3区 医学
Frontiers in Cellular Neuroscience Pub Date : 2024-09-10 DOI: 10.3389/fncel.2024.1379540
Dirk Bauer, Michael R. R. Böhm, Xiaoyu Wu, Bo Wang, Tida Viola Jalilvand, Martin Busch, Maren Kasper, Katrin Brockhaus, Lena Wildschütz, Harutyun Melkonyan, Björn Laffer, Gerd Meyer Zu Hörste, Arnd Heiligenhaus, Solon Thanos
{"title":"Crystallin β-b2 promotes retinal ganglion cell protection in experimental autoimmune uveoretinitis","authors":"Dirk Bauer, Michael R. R. Böhm, Xiaoyu Wu, Bo Wang, Tida Viola Jalilvand, Martin Busch, Maren Kasper, Katrin Brockhaus, Lena Wildschütz, Harutyun Melkonyan, Björn Laffer, Gerd Meyer Zu Hörste, Arnd Heiligenhaus, Solon Thanos","doi":"10.3389/fncel.2024.1379540","DOIUrl":"https://doi.org/10.3389/fncel.2024.1379540","url":null,"abstract":"Crystallin βb2 (crybb2) is upregulated in regenerating retinas and in various pathological conditions of the retina, including uveoretinitis. However, the role of crybb2 in this disease is largely unknown. Therefore, we used recombinant crybb2 (rcrybb2) as intravitreal treatment of B10.RIII mice prior to immunization with human interphotoreceptor retinoid-binding protein peptide 161–180 (hIRBPp161-180) in complete Freund’s adjuvant (CFA) and concomitant injection of pertussis toxin (PTX) to induce experimental autoimmune uveoretinitis (EAU). In naïve mice, more beta III-tubulin (TUBB3) + and RNA-binding protein with multiple splicing (RBPMS) + cells were found in the ganglion cell layer of the retina than in EAU eyes, suggesting a loss of retinal ganglion cells (RGC) during the development of EAU. At the same time, the number of glial fibrillary acidic protein (GFAP) + cells increased in EAU eyes. RGCs were better protected in EAU eyes treated with rcrybb2, while the number of GFAP+ cells decreased. However, in retinal flatmounts, both retinal ganglion cells and retinal endothelial cells stained positive for TUBB3, indicating that TUBB3 is present in naïve B10.RIII mouse eyes not exclusive to RGCs. A significant decline in the number of RBPMS-positive retinal ganglion cells was observed in retinal flatmounts from EAU retinas in comparison to naïve retinas or EAU retinas with intravitreal rcrybb2 treatment. Whereas no significant decrease in TUBB3 levels was detected using Western blot and RT-qPCR, GFAP level, as a marker for astrocytes, increased in EAU mice compared to naïve mice. Level of <jats:italic>Bax</jats:italic> and <jats:italic>Bcl2</jats:italic> in the retina was altered by treatment, suggesting better cell survival and inhibition of apoptosis. Furthermore, our histologic observations of the eyes showed no change in the incidence and severity of EAU, nor was the immune response affected by intravitreal rcrybb2 treatment. Taken together, these results suggest that intravitreal injection of rcrybb2 reduces retinal RGC death during the course of EAU, independent of local or systemic autoimmune responses. In the future, treating posterior uveitis with rcrybb2 to protect RGCs may offer a promising novel therapeutic strategy.","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"31 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dendrites contribute to the gradient of intrinsic timescales encompassing cortical and subcortical brain networks 树突有助于形成涵盖皮层和皮层下大脑网络的内在时间尺度梯度
IF 5.3 3区 医学
Frontiers in Cellular Neuroscience Pub Date : 2024-09-06 DOI: 10.3389/fncel.2024.1404605
Kaichao Wu, Leonardo L. Gollo
{"title":"Dendrites contribute to the gradient of intrinsic timescales encompassing cortical and subcortical brain networks","authors":"Kaichao Wu, Leonardo L. Gollo","doi":"10.3389/fncel.2024.1404605","DOIUrl":"https://doi.org/10.3389/fncel.2024.1404605","url":null,"abstract":"IntroductionCytoarchitectonic studies have uncovered a correlation between higher levels of cortical hierarchy and reduced dendritic size. This hierarchical organization extends to the brain's timescales, revealing longer intrinsic timescales at higher hierarchical levels. However, estimating the contribution of single-neuron dendritic morphology to the hierarchy of timescales, which is typically characterized at a macroscopic level, remains challenging.MethodHere we mapped the intrinsic timescales of six functional networks using functional magnetic resonance imaging (fMRI) data, and characterized the influence of neuronal dendritic size on intrinsic timescales of brain regions, utilizing a multicompartmental neuronal modeling approach based on digitally reconstructed neurons.ResultsThe fMRI results revealed a hierarchy of intrinsic timescales encompassing both cortical and subcortical brain regions. The neuronal modeling indicated that neurons with larger dendritic structures exhibit shorter intrinsic timescales. Together these findings highlight the contribution of dendrites at the neuronal level to the hierarchy of intrinsic timescales at the whole-brain level.DiscussionThis study sheds light on the intricate relationship between neuronal structure, cytoarchitectonic maps, and the hierarchy of timescales in the brain.","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"2 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CoA synthase plays a critical role in neurodevelopment and neurodegeneration CoA 合成酶在神经发育和神经退行性变中发挥着关键作用
IF 5.3 3区 医学
Frontiers in Cellular Neuroscience Pub Date : 2024-09-05 DOI: 10.3389/fncel.2024.1458475
Chiara Cavestro, Marco D’Amato, Maria Nicol Colombo, Floriana Cascone, Andrea Stefano Moro, Sonia Levi, Valeria Tiranti, Ivano Di Meo
{"title":"CoA synthase plays a critical role in neurodevelopment and neurodegeneration","authors":"Chiara Cavestro, Marco D’Amato, Maria Nicol Colombo, Floriana Cascone, Andrea Stefano Moro, Sonia Levi, Valeria Tiranti, Ivano Di Meo","doi":"10.3389/fncel.2024.1458475","DOIUrl":"https://doi.org/10.3389/fncel.2024.1458475","url":null,"abstract":"Coenzyme A (CoA), which is widely distributed and vital for cellular metabolism, is a critical molecule essential in both synthesizing and breaking down key energy sources in the body. Inborn errors of metabolism in the cellular <jats:italic>de novo</jats:italic> biosynthetic pathway of CoA have been linked to human genetic disorders, emphasizing the importance of this pathway. The <jats:italic>COASY</jats:italic> gene encodes the bifunctional enzyme CoA synthase, which catalyzes the last two reactions of the CoA biosynthetic pathway and serves as one of the rate-limiting components of the pathway. Recessive variants of this gene cause an exceptionally rare and devastating disease called COASY protein-associated neurodegeneration (CoPAN) while complete loss-of-function variants in <jats:italic>COASY</jats:italic> have been identified in fetuses/neonates with Pontocerebellar Hypoplasia type 12 (PCH 12). Understanding why the different symptoms emerge in these disorders and what determines the development of one syndrome over the other is still not achieved. To shed light on the pathogenesis, we generated a new conditional animal model in which <jats:italic>Coasy</jats:italic> was deleted under the control of the human GFAP promoter. We used this mouse model to investigate how defects in the CoA biosynthetic pathway affect brain development. This model showed a broad spectrum of severity of the <jats:italic>in vivo</jats:italic> phenotype, ranging from very short survival (less than 2 weeks) to normal life expectancy in some animals. Surviving mice displayed a behavioral phenotype with sensorimotor defects. <jats:italic>Ex vivo</jats:italic> histological analysis revealed variable but consistent cerebral and cerebellar cortical hypoplasia, in parallel with a broad astrocytic hyper-proliferation in the cerebral cortex. In addition, primary astrocytes derived from this model exhibited lipid peroxidation, iron dyshomeostasis, and impaired mitochondrial respiration. Notably, <jats:italic>Coasy</jats:italic> ablation in radial glia and astrocytic lineage triggers abnormal neuronal development and chronic neuroinflammation, offering new insights into disease mechanisms.","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"34 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biphasic response of human iPSC-derived neural network activity following exposure to a sarin-surrogate nerve agent 暴露于沙林代神经毒剂后人类 iPSC 衍生神经网络活动的双相反应
IF 5.3 3区 医学
Frontiers in Cellular Neuroscience Pub Date : 2024-09-05 DOI: 10.3389/fncel.2024.1378579
Chandrakumar Bogguri, Vivek Kurien George, Beheshta Amiri, Alexander Ladd, Nicholas R. Hum, Aimy Sebastian, Heather A. Enright, Carlos A. Valdez, T. Nathan Mundhenk, Jose Cadena, Doris Lam
{"title":"Biphasic response of human iPSC-derived neural network activity following exposure to a sarin-surrogate nerve agent","authors":"Chandrakumar Bogguri, Vivek Kurien George, Beheshta Amiri, Alexander Ladd, Nicholas R. Hum, Aimy Sebastian, Heather A. Enright, Carlos A. Valdez, T. Nathan Mundhenk, Jose Cadena, Doris Lam","doi":"10.3389/fncel.2024.1378579","DOIUrl":"https://doi.org/10.3389/fncel.2024.1378579","url":null,"abstract":"Organophosphorus nerve agents (OPNA) are hazardous environmental exposures to the civilian population and have been historically weaponized as chemical warfare agents (CWA). OPNA exposure can lead to several neurological, sensory, and motor symptoms that can manifest into chronic neurological illnesses later in life. There is still a large need for technological advancement to better understand changes in brain function following OPNA exposure. The human-relevant <jats:italic>in vitro</jats:italic> multi-electrode array (MEA) system, which combines the MEA technology with human stem cell technology, has the potential to monitor the acute, sub-chronic, and chronic consequences of OPNA exposure on brain activity. However, the application of this system to assess OPNA hazards and risks to human brain function remains to be investigated. In a concentration-response study, we have employed a human-relevant MEA system to monitor and detect changes in the electrical activity of engineered neural networks to increasing concentrations of the sarin surrogate 4-nitrophenyl isopropyl methylphosphonate (NIMP). We report a biphasic response in the spiking (but not bursting) activity of neurons exposed to low (i.e., 0.4 and 4 μM) versus high concentrations (i.e., 40 and 100 μM) of NIMP, which was monitored during the exposure period and up to 6 days post-exposure. Regardless of the NIMP concentration, at a network level, communication or coordination of neuronal activity decreased as early as 60 min and persisted at 24 h of NIMP exposure. Once NIMP was removed, coordinated activity was no different than control (0 μM of NIMP). Interestingly, only in the high concentration of NIMP did coordination of activity at a network level begin to decrease again at 2 days post-exposure and persisted on day 6 post-exposure. Notably, cell viability was not affected during or after NIMP exposure. Also, while the catalytic activity of AChE decreased during NIMP exposure, its activity recovered once NIMP was removed. Gene expression analysis suggests that human iPSC-derived neurons and primary human astrocytes resulted in altered genes related to the cell’s interaction with the extracellular environment, its intracellular calcium signaling pathways, and inflammation, which could have contributed to how neurons communicated at a network level.","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synaptic Vesicle Glycoprotein 2C: a role in Parkinson’s disease 突触小泡糖蛋白 2C:在帕金森病中的作用
IF 5.3 3区 医学
Frontiers in Cellular Neuroscience Pub Date : 2024-09-05 DOI: 10.3389/fncel.2024.1437144
Chu Hua Chang, Kah Leong Lim, Jia Nee Foo
{"title":"Synaptic Vesicle Glycoprotein 2C: a role in Parkinson’s disease","authors":"Chu Hua Chang, Kah Leong Lim, Jia Nee Foo","doi":"10.3389/fncel.2024.1437144","DOIUrl":"https://doi.org/10.3389/fncel.2024.1437144","url":null,"abstract":"Synaptic Vesicle Glycoprotein 2C (SV2C), characterized by its selective expression in discrete brain regions such as the midbrain, has recently emerged as a promising player in Parkinson’s Disease (PD) – a debilitating neurodegenerative disorder affecting millions worldwide. This review aims to consolidate our current understanding of SV2C’s function, its involvement in PD pathogenesis, and to evaluate its potential as a therapeutic target. Integrating previous findings of SV2C, from genetics to molecular studies, and drawing on insights from the largest East Asian genome-wide association study that highlights <jats:italic>SV2C</jats:italic> as a novel risk factor for PD, we explore the potential pathways through which SV2C may influence the disease. Our discussion extends to the implications of SV2C’s role in synaptic vesicle trafficking, neurotransmitter release, and α-synuclein homeostasis, thereby laying the groundwork for future investigations that could pave the way for novel therapeutic strategies in combating PD.","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"24 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnostic value and correlation analysis of serum cytokine levels in patients with multiple system atrophy 多系统萎缩患者血清细胞因子水平的诊断价值和相关性分析
IF 5.3 3区 医学
Frontiers in Cellular Neuroscience Pub Date : 2024-09-04 DOI: 10.3389/fncel.2024.1459884
Xueping Chen, Sihui Chen, Xiaohui Lai, Jiajia Fu, Jing Yang, Ruwei Ou, Lingyu Zhang, Qianqian Wei, Xiaoyan Guo, Huifang Shang
{"title":"Diagnostic value and correlation analysis of serum cytokine levels in patients with multiple system atrophy","authors":"Xueping Chen, Sihui Chen, Xiaohui Lai, Jiajia Fu, Jing Yang, Ruwei Ou, Lingyu Zhang, Qianqian Wei, Xiaoyan Guo, Huifang Shang","doi":"10.3389/fncel.2024.1459884","DOIUrl":"https://doi.org/10.3389/fncel.2024.1459884","url":null,"abstract":"BackgroundThe association between cytokines in peripheral blood and clinical symptoms of multiple system atrophy (MSA) has been explored in only a few studies with small sample size, and the results were obviously controversial. Otherwise, no studies have explored the diagnostic value of serum cytokines in MSA.MethodsSerum cytokines, including interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor alpha (TNF-α), were measured in 125 MSA patients and 98 healthy controls (HCs). Correlations of these serum cytokines with clinical variables were analyzed in MSA patients. Diagnostic value of cytokines for MSA was plotted by receiver operating curves.ResultsNo significant differences were found in sex and age between the MSA group and the HCs. TNF-α in MSA patients were significantly higher than those in HCs (area under the curve (AUC) 0.768), while IL-6 and IL-8 were not. Only Hamilton Anxiety Scale (HAMA) has a positive correlation between with TNF-α in MSA patients with age and age at onset as covariates. Serum IL-6 was associated with HAMA, Hamilton Depression Scale (HAMD), the Unified MSA Rating Scale I (UMSARS I) scores, the UMSARS IV and the Instrumental Activity of Daily Living scores. However, IL-8 was not associated with all clinical variables in MSA patients. Regression analysis showed that HAMA and age at onset were significantly associated with TNF-α, and only HAMA was mild related with IL-6 levels in MSA patients.ConclusionSerum TNF-α and IL-6 levels in MSA patients may be associated with anxiety symptom; however, only TNF-α was shown to be a useful tool in distinguishing between MSA and HCs.","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"26 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信