Minzhuo Liu, Shuiqing Wu, Yi Wu, Jie Zhang, Jun Chen, Xucong Peng, Qiusheng Yang, Zhoujin Tan, Zhihong Zeng
{"title":"Rubus suavissimus S. Lee Extract Alleviates Oxidative Stress and Inflammation in H2O2-Treated Retinal Pigment Epithelial Cells and in High-Fat Diet-Fed Mouse Retinas","authors":"Minzhuo Liu, Shuiqing Wu, Yi Wu, Jie Zhang, Jun Chen, Xucong Peng, Qiusheng Yang, Zhoujin Tan, Zhihong Zeng","doi":"10.31083/j.fbl2811279","DOIUrl":"https://doi.org/10.31083/j.fbl2811279","url":null,"abstract":"Background: Age-related macular degeneration (AMD) is the most common cause of visual disorders in the aged population and is characterized by the formation of retinal pigment epithelium (RPE) deposits and dysfunction/death of the RPE and photoreceptors. It is supposed that both oxidative stress and inflammation play a critical role in the pathogenesis of AMD. The development of therapeutic strategies against oxidative stress and inflammation in AMD is urgently needed. Rubus suavissimus S. Lee (RS), a medicinal plant growing in the southwest region of China, has been used as an herbal tea and medicine for various diseases. Methods: In this project, we evaluate the therapeutic potential of RS extract for AMD. We prepared RS extracts from dried leaves, which contained the main functional compounds. Results: RS extract significantly increased cell viability, upregulated the expression of antioxidant genes, lowered the generation of malondialdehyde and reactive oxygen species, and suppressed inflammation in H2O2-treated human RPE cells. In the in vivo study, treatment with RS extract attenuated body weight gain, lowered cholesterol and triglyceride levels in the liver and serum, increased antioxidant capacity, and alleviated inflammation in the retina and RPE/choroid of mice fed a high-fat diet. Conclusions: Our findings suggest that RS extract offers therapeutic potential for treating AMD patients.","PeriodicalId":12366,"journal":{"name":"Frontiers in bioscience","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135685118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhibition of PFKFB3 Expression Stimulates Macrophage-Mediated Lymphangiogenesis Post-Acute Myocardial Infarction","authors":"Tianyi Cui, Chao Feng, Hantao Jiang, Ying Jin, Jinping Feng","doi":"10.31083/j.fbl2811277","DOIUrl":"https://doi.org/10.31083/j.fbl2811277","url":null,"abstract":"Background: The dilation of lymphatic vessels plays a critical role in maintaining heart function, while a lack thereof could contribute to heart failure (HF), and subsequently to an acute myocardial infarction (AMI). Macrophages participate in the induction of lymphangiogenesis by secreting vascular endothelial cell growth factor C (VEGF-C), although the precise mechanism remains unclear. Methods: Intramyocardial injections of adeno-associated viruses (AAV9) to inhibit the expression of VEGFR3 (VEGFR3 shRNA) or promote the expression of VEGFR3 (VEGFR3 ORF) in the heart; Myh6-mCherry B6 D2-tg mice and flow cytometry were used to evaluate the number of myocellular debris in the mediastinal lymph nodes; fluorescence staining and qPCR were used to evaluate fluorescence analysis; seahorse experiment was used to evaluate the level of glycolysis of macrophages; Lyz2𝐶𝑟𝑒, VEGFCfl/fl, and PFKFB3fl/fl mice were used as a model to knock out the expression of VEGF-C and PFKFB3 in macrophages. Results: The escalation of VEGFR3 in cardiac tissue can facilitate the drainage of myocardial debris to the mediastinal lymph nodes, thereby improving cardiac function and reducing fibrosis after reperfusion injury. Conversely, myeloid VEGF-C deficiency displayed an increase in macrophage counts and inflammation levels following reperfusion injury. The inhibition of the critical enzyme PFKFB3 in macrophage glycolysis can stimulate the manifestation of VEGF-C in macrophages. A deficiency in myeloid PFKFB3 is associated with induced lymphangiogenesis following reperfusion injury. Conclusions: Our initial investigations suggest that the suppression of PFKFB3 expression in macrophages could potentially stimulate the production of VEGF-C in these immune cells, which in turn may facilitate lymphangiogenesis and mitigate the inflammatory effects of I/R injury.","PeriodicalId":12366,"journal":{"name":"Frontiers in bioscience","volume":"7 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135820619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mariana B Rebelo, Cláudia S Oliveira, Freni K Tavaria
{"title":"Novel Strategies for Preventing Dysbiosis in the Oral Cavity","authors":"Mariana B Rebelo, Cláudia S Oliveira, Freni K Tavaria","doi":"10.31083/j.fbe1504023","DOIUrl":"https://doi.org/10.31083/j.fbe1504023","url":null,"abstract":"Oral diseases affect over three billion people worldwide, making it one of the most common infections. Recent studies show that one approach to reducing the risk of chronic infections, such as caries, gingivitis, periodontitis, and halitosis, is to control the ecology of the oral microbiome instead of completely removing both the harmful and beneficial microorganisms. This is based on the knowledge that oral diseases are not caused by a single pathogen but rather by a shift in the homeostasis of the entire microbiota, a process known as dysbiosis. Consequently, it is of the utmost importance to implement strategies that are able to prevent and control oral dysbiosis to avoid serious complications, including heart, lung, and other systemic diseases. Conventional treatments include the use of antibiotics, which further disrupt the equilibrium in the oral microbiota, together with the mechanical removal of the decayed cavity area following its formation. Therefore, it is imperative to implement alternative strategies with the potential to overcome the disadvantages of the current therapy, namely, the use of broad-spectrum antibiotics. In this sense, probiotics and postbiotics have received particular attention since they can modulate the oral microbiota and decrease the dysbiotic rate in the oral cavity. However, their mechanisms of action need to be addressed to clarify and drive their possible applications as preventive strategies. In this sense, this review provides an overview of the potential of probiotics and postbiotics, focusing on their antimicrobial and antibiofilm activities as well as their ability to modulate the inflammatory response. Finally, it also showcases the main advantages and disadvantages of orodispersible films—a promising delivery mechanism for both probiotics and postbiotics to target oral dysbiosis.","PeriodicalId":12366,"journal":{"name":"Frontiers in bioscience","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136182388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tatyana Nuzhnaya, Svetlana Veselova, Guzel Burkhanova, Igor Maksimov
{"title":"Virulence Factors of the Fungal Pathogen Stagonospora nodorum Manipulate Hormonal Signaling Pathways in Triticum aestivum L. by Regulating Host Plant MicroRNA Expressions","authors":"Tatyana Nuzhnaya, Svetlana Veselova, Guzel Burkhanova, Igor Maksimov","doi":"10.31083/j.fbe1504022","DOIUrl":"https://doi.org/10.31083/j.fbe1504022","url":null,"abstract":"Background: Currently, the role of microRNAs in plant immune responses is being actively studied. Thus, our aim was to research the effect of Stagonospora nodorum (Berk.) NEs SnToxA and SnTox3 on the expression of miRNAs involved in the wheat–S. nodorum interaction and to determine the role of phytohormones in this process. Methods: The expressions of nine conserved microRNAs were studied by quantitative real-time polymerase chain reaction in three different wheat genotypes of bread spring wheat (Triticum aestivum L.) infected with S. nodorum. Phytohormone treatments (trans-zeatin, 2-chloroethylphosphonic acid (etefone is the chemical precursor of ethylene), and salicylic acid) were applied. The results were compared with disease symptoms, the redox status of plants, and the expression of fungal necrotrophic effector (NE) genes of SnToxA and SnTox3 and genes of SnPf2, SnStuA, alongside SnCon7 transcription factors (TFs). Results: Salicylic acid (SA) and cytokinins (CK) are involved in the development of defense reactions in wheat plants against S. nodorum, by regulating the expression of fungal NEs and TFs genes, inducing an oxidative burst in all three wheat genotypes. Moreover, ethylene enhanced the virulence of the pathogen by increasing the expression of fungal NE and TF genes, thereby resulting in a decrease in the generation of reactive oxygen species in all three cultivars. The nine miRNAs played a role in the development of wheat resistance against S. nodorum. NE SnTox3 mainly suppressed the expression of three miRNAs: miR159, miR393, and miR408, while NE SnToxA suppressed miR166 expression. Conversely, treatment with CK and SA increased the expression of miR159 and miR408; treatment with CK increased the expression of miR393 and miR166. Ethylene inhibited the expression of miR159, miR408, miR393, and miR166. Suppression of miP159 expression by NE SnTox3 was most likely associated with the activation of the ethylene signaling pathway. NEs SnToxA and SnTox3 suppressed the expression of miR408, whose role most likely consisted of inhibiting the catalase activity, via SA and CK regulation. In addition, NE SnToxA hijacked the SA signaling pathway and manipulated it for fungal growth and development. Fungal TFs SnPf2 and SnStuA could be involved in the regulation of these processes indirectly through the regulation of the expression of NE genes. Conclusions: The results of this work show, for the first time, the role of microRNAs in the development of wheat resistance against S. nodorum and the effect of S. nodorum NEs SnToxA and SnTox3 on the activity of plant microRNAs.","PeriodicalId":12366,"journal":{"name":"Frontiers in bioscience","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136182390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}