{"title":"An updated patent review of EZH2 inhibitors (2024-present).","authors":"Guoquan Wan, Siyan Li, Qifan Tang, Huapei Qiu, Qiangsheng Zhang, Luoting Yu","doi":"10.1080/13543776.2025.2483399","DOIUrl":"10.1080/13543776.2025.2483399","url":null,"abstract":"<p><strong>Introduction: </strong>EZH2 forms the PRC2 complex with SUZ12 and EED. As a crucial catalytic subunit of PRC2, EZH2 modifies histone H3K27 via its SET domain, resulting in chromatin condensation and suppressing the transcription of related target genes. EZH2 not only functions in PRC2-dependent transcriptional repression but can also activate gene expression in PRC2-independent circumstances or regulate the activity of downstream genes via its own activating mutations. On the basis of the critical role of EZH2 in cancer, the development of inhibitors targeting EZH2 provides a new strategy for cancer therapy.</p><p><strong>Areas covered: </strong>The purpose of this review is to summarize the molecular mechanisms of EZH2 inhibitors and emphasize the research progress on EZH2 inhibitors published in the patent literature in recent years. The literature and patent databases of PubMed, Web of Science, SCIFinder, WIPO, USPTO, EPO, and CNIPA were combined to search for more effective EZH2 inhibitors.</p><p><strong>Expert opinion: </strong>Recently, a wide range of structurally diverse EZH2 inhibitors, particularly EZH2 degraders, have been identified. These EZH2 modulators have demonstrated significant potential in treating various diseases, with cancer being a primary focus. The development of small molecules targeting EZH2 with distinct pharmacological effects is poised with numerous opportunities.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"597-610"},"PeriodicalIF":5.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RORγt inhibitors in clinical development for the treatment of autoimmune diseases: challenges and opportunities.","authors":"Nannan Sun, Yonghui Wang","doi":"10.1080/13543776.2025.2482936","DOIUrl":"10.1080/13543776.2025.2482936","url":null,"abstract":"<p><strong>Introduction: </strong>Nuclear receptor retinoid-related orphan receptor gamma-t (RORγt) is a major transcription factor for Th17 cell differentiation and IL-17 production. RORγt has been considered as a promising drug target for the treatment of IL-17-mediated inflammatory diseases. Numerous small molecule inhibitors have been discovered, and more than 20 of RORγt inhibitors have been advanced to clinical trials. However, none of these compounds has yet achieved market approval.</p><p><strong>Areas covered: </strong>This manuscript summarizes the development of 22 clinical-stage RORγt inhibitors, including their structures, patent applications, and clinical trial status, based on publications and patents available up to November 2024.</p><p><strong>Expert opinion: </strong>The discovery of RORγt inhibitors was considered as an exciting field for the development of small molecular treatments, which has gone through a boom period in the past 10 years. However, some of the leading RORγt inhibitors recently failed in clinical trials due to lack of efficacy or having some safety concerns, although a few small molecule candidates targeting RORγt are still in trials and more in preclinical studies. Realizing the challenge, researchers started to develop different approaches such as dual targeting or exploring new indications, utilizing the potential value of RORγt inhibitors.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"583-595"},"PeriodicalIF":5.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143662738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A patent review of CXCR7 modulators (2019-present).","authors":"Thanigaimalai Pillaiyar, Stefan Laufer","doi":"10.1080/13543776.2025.2477475","DOIUrl":"10.1080/13543776.2025.2477475","url":null,"abstract":"<p><strong>Introduction: </strong>Atypical chemokine receptor 3 (ACKR3) (formerly CXCR7) regulates various biological processes through its ligands and is closely associated with numerous diseases, including inflammation, cancer, cardiovascular diseases (CVDs), pain, and neurological disorders. Therefore, ACKR3 has emerged as a potential target for disease treatment.</p><p><strong>Areas covered: </strong>This review summarizes the ACKR3 modulators published in patents from 2019 to 2024 using data from Google Patents, the European Patent Office, and the World Intellectual Property Organization's online databases. This includes information on their chemical structures, syntheses, activities, and developmental stages.</p><p><strong>Expert opinion: </strong>ACKR3 agonists gained traction as a treatment for cardiovascular and pain conditions. WW-12, which was derived from the chemical modifications of conolidine, became a novel small-molecule pain modulator by activating ACKR3, which in turn boosted endogenous opioid peptides for the classical opioid receptors.ACKR3 antagonist ACT-1004-1239 from Idorsia Pharmaceuticals Ltd. has demonstrated the ability to treat cancer, acute lung injury/ARDS, and autoimmune diseases, including multiple sclerosis. The outcomes of these clinical trials will direct the development and indications of future ACKR3 modulators.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"543-569"},"PeriodicalIF":5.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143691626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sheenagh Grace Aiken, Thomas Grimes, Shonagh Munro, Tryfon Zarganes-Tzitzikas, Nicholas Barrie La Thangue, Paul Edward Brennan
{"title":"A patent review of peptidylarginine deiminase 4 (PAD4) inhibitors (2014-present).","authors":"Sheenagh Grace Aiken, Thomas Grimes, Shonagh Munro, Tryfon Zarganes-Tzitzikas, Nicholas Barrie La Thangue, Paul Edward Brennan","doi":"10.1080/13543776.2025.2484366","DOIUrl":"10.1080/13543776.2025.2484366","url":null,"abstract":"<p><strong>Introduction: </strong>PAD4 mediates the post-translational modification of arginine residues into citrulline which can have profound effects on protein structure, function and interactions. Protein citrullination and neutrophil extracellular trap (NET) formation associated with increased PAD4 activity have been implicated in the development of autoimmune conditions, cardiovascular diseases, neurodegenerative disorders, and cancer. PAD4 inhibitors have been shown to suppress citrullination and NETs formation.</p><p><strong>Areas covered: </strong>This review covers 10 years of industrial drug discovery campaigns reported in 28 patent applications from 10 companies. Cortellis, the World Intellectual Property Organization website, Scopus and SciFinder were used to search the patent literature using the keywords 'PAD4' and 'PAD4 inhibitor.' Most of the reported inhibitors share the same core scaffold with varied decoration of different complexity, including highly functionalized macrocycles, with some in vivo and pharmacokinetic (PK) data reported for selected examples.</p><p><strong>Expert opinion: </strong>Despite PAD4's clear involvement in multiple disease pathways, its detailed mechanism remains insufficiently understood. Selective and potent compounds with improved PK properties have been provided but most research on PAD4 is still at the experimental stage or preclinical development; the most promising is JBI-1044, at the IND stage, while some companies have turned to antibodies despite considerable previous investment in small molecules.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"611-621"},"PeriodicalIF":5.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143709185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ze Dong, Yue Huang, Wenyang Xia, Yonggang Liao, Cai-Guang Yang
{"title":"A patenting perspective of fat mass and obesity associated protein (FTO) inhibitors: 2017-present.","authors":"Ze Dong, Yue Huang, Wenyang Xia, Yonggang Liao, Cai-Guang Yang","doi":"10.1080/13543776.2025.2477482","DOIUrl":"10.1080/13543776.2025.2477482","url":null,"abstract":"<p><strong>Introduction: </strong>The fat mass and obesity-associated protein (FTO) catalytically demethylates RNA N<sup>6</sup>-methyl adenosine (m<sup>6</sup>A) modification, dynamically regulates gene expression in eukaryotes. Interestingly, FTO is highly expressed and functions as an oncogenic factor in a wide range of cancers. Therefore, using small-molecule inhibitors to target FTO has been established as a promising therapeutic strategy for combating cancers.</p><p><strong>Areas covered: </strong>Patent literature claiming novel chemical entities as FTO inhibitors disclosed from 2017 to present is available in Espacenet, including dozens of patent documents.</p><p><strong>Expert opinion: </strong>The pivotal influence of FTO demethylase in a particular epigenetic layer of regulation of gene expression renders it promising for FTO to be a therapeutical target for many diseases, including malignant cancers. Several institutions were prompted and have patented chemical frameworks as FTO inhibitors. Remarkedly, the FTO inhibitor CS1 (Bisantrene) has advanced to clinical trials for treating acute myeloid leukemia (AML). The successful advancement of CS1 into clinical trials would continuingly stimulate researches on RNA epigenetic enzymes targeted first-in-class anticancer drug discovery.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"533-542"},"PeriodicalIF":5.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143572510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xintao He, Lu Chen, Shuangshuang Wu, Zhichao Chen, Wufu Zhu, Dan Qiao
{"title":"An updated patent review of antitumor macrocyclic kinase inhibitors (2019 present).","authors":"Xintao He, Lu Chen, Shuangshuang Wu, Zhichao Chen, Wufu Zhu, Dan Qiao","doi":"10.1080/13543776.2025.2484368","DOIUrl":"10.1080/13543776.2025.2484368","url":null,"abstract":"<p><strong>Introduction: </strong>Small molecule kinase inhibitors are crucial in the treatment of tumors, and the development of novel inhibitors is a primary approach to combat the continuous emergence of drug resistance. Macrocyclization has emerged as a cutting-edge strategy to enhance the potency, selectivity, and pharmacokinetic properties of these inhibitors by altering their biological and physicochemical characteristics compared to their acyclic counterparts.</p><p><strong>Areas covered: </strong>The present article provides a comprehensive overview of the recent advancements in macrocyclic small molecule inhibitors and their inhibitory activities against various cancer cells, which have been patented since 2019.</p><p><strong>Expert opinion: </strong>To date, small-molecule kinase inhibitors have demonstrated remarkable therapeutic efficacy in clinical settings. Recent patents have primarily focused on addressing challenges associated with resistance mutations. Despite the significant success achieved in developing selective kinase agents, the identification of new targets and emergence of novel mutations necessitate the development of novel small-molecule inhibitors. Macrocyclic compounds possess distinctive conformational constraints, enhanced inhibitor potency and selectivity, as well as favorable pharmacokinetic properties, rendering them safe, efficient, selective, low-toxicity agents with unique structural characteristic.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"623-637"},"PeriodicalIF":5.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143700032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin-Yu Chen, Kai Wang, Jie Jia, Xiao-Tian Kong, Huan-Qiu Li, Sheng Tian
{"title":"P2Y<sub>12</sub>R antagonists in antithrombotic therapy: a patent and literature review (2019-present).","authors":"Xin-Yu Chen, Kai Wang, Jie Jia, Xiao-Tian Kong, Huan-Qiu Li, Sheng Tian","doi":"10.1080/13543776.2025.2467683","DOIUrl":"10.1080/13543776.2025.2467683","url":null,"abstract":"<p><strong>Introduction: </strong>P2Y<sub>12</sub> receptor (P2Y<sub>12</sub>R) is a G protein-coupled receptor that plays a crucial role in regulating platelet activation and aggregation. P2Y<sub>12</sub>R is involved in various processes such as renal fibrosis, cancer, ischemic disease, and related complications, making it an appealing target for therapeutic interventions. Over the past decade, the discovery and development of P2Y<sub>12</sub>R antagonists have significantly advanced, offering novel treatment options that improve clinical outcomes.</p><p><strong>Areas covered: </strong>This review covers P2Y<sub>12</sub>R antagonists reported in patents issued in the online databases of the World Intellectual Property Organization and the European Patent Office from 2019 to 2024. This review introduces the development of existing antagonists and evaluates the therapeutic potential of these compounds.</p><p><strong>Expert opinion: </strong>Reversible P2Y<sub>12</sub>R antagonists offer a potentially safer alternative to the currently dominant irreversible antagonists on the market, as they allow for more controlled platelet inhibition and can reduce the toxicity and adverse effects associated with conventional drugs. Importantly, the integration of computational drug design and molecular docking studies in the discovery and optimization of P2Y<sub>12</sub>R antagonists represents a significant advancement in precision medicine. This not only provides valuable structural scaffolds but also stimulates novel ideas for developing promising drugs that are both safe and efficacious.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"515-532"},"PeriodicalIF":5.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isabel Devesa, Gregorio Fernández-Ballester, Asia Fernandez-Carvajal, Antonio Ferrer-Montiel
{"title":"A review of the patent literature surrounding TRPV1 modulators.","authors":"Isabel Devesa, Gregorio Fernández-Ballester, Asia Fernandez-Carvajal, Antonio Ferrer-Montiel","doi":"10.1080/13543776.2025.2467698","DOIUrl":"10.1080/13543776.2025.2467698","url":null,"abstract":"<p><strong>Introduction: </strong>TRPV1, a pivotal therapeutic target for chronic pain and pruritus, has been validated in the pathogenesis of several pathologies from diabetes to cancer. Despite the constellation of chemical structures and strategies, none of these molecules has yet been clinically developed as a new drug application due to safety concerns, particularly in thermoregulation. Thus, clinical development of TRPV1 modulators remains a challenge.</p><p><strong>Areas covered: </strong>This review covers the patent literature on TRPV1 modulators (2019-2024, PubMed, Google Patents, and Espacenet), from orthosteric ligands to innovative compounds of biotechnological origin such as interfering RNAs or antibodies, and dual modulators that can act on TRPV1 and associated proteins in different tissues.</p><p><strong>Expert opinion: </strong>Therapeutic strategies that preferentially act on dysfunctional TRPV1 channels appear essential, along with a superior understanding of the underlying mechanisms affecting changes in core body temperature (CBT). Recent findings describing differential receptor interactions of antagonists that do not affect CBT may pave the way to the next generation of orally active TRPV1 inhibitors. Although we have thus far experienced a bitter feeling in TRPV1 drug development, the recent progress in different disciplines, including human-based preclinical models, will set an interdisciplinary approach to design and develop clinically relevant TRPV1 modulators.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"477-491"},"PeriodicalIF":5.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A patent review of CYP3A4 inhibitors (2018 - present).","authors":"Dong-Zhu Tu, Xue-Yan Hu, Jing-Xuan Lei, Shu-Yan Liu, Zhang-Ping Xiao, Ling Yang, Guang-Bo Ge","doi":"10.1080/13543776.2025.2470294","DOIUrl":"10.1080/13543776.2025.2470294","url":null,"abstract":"<p><strong>Introduction: </strong>Cytochrome P450 3A4 (CYP3A4), one of the most important xenobiotic-metabolizing enzymes, plays a central role in drug metabolism and acts as a key mediator in drug-drug interactions. CYP3A4 inhibitors can potentiate the <i>in vivo</i> therapeutic effects of CYP3A4-substrate drugs via enhancing their systematic exposure levels. Two CYP3A4 inhibitors (ritonavir and cobicistat) have already been approved for modulating the exposure levels of CYP3A4-substrate drugs.</p><p><strong>Areas covered: </strong>This review summarizes the newly patented CYP3A4 inhibitors in the period (2018-2024) by using the keywords 'CYP3A4' and 'inhibitor' in Espacenet database from academic institutions and industrial companies. The chemical structures and inhibition profiles of the patented CYP3A4 inhibitors, including the anti-CYP3A4 potency, inhibitory mechanisms, and other relevant information, are summarized and discussed.</p><p><strong>Expert opinion: </strong>Although diverse CYP3A4 inhibitors have been developed in the past few years, the development of more efficacious CYP3A4 inhibitors with favorable pharmacokinetic and safety profiles is still challenging. To maximize the benefit of CYP3A4 inhibitors, combination strategies should be used for the development of highly specific CYP3A4 inhibitors or degraders with efficacious anti-CYP3A4 effects and favorable pharmacokinetic profiles. Meanwhile, more efforts should be made to address the organ-targeting or tumor-targeting ability of CYP3A4 inhibitors for specific purposes.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"503-513"},"PeriodicalIF":5.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fahad Imtiaz Rahman, Thomas M Webster, Corey R Hopkins
{"title":"Update on mGlu4 modulator patents: 2017 to present.","authors":"Fahad Imtiaz Rahman, Thomas M Webster, Corey R Hopkins","doi":"10.1080/13543776.2025.2467679","DOIUrl":"10.1080/13543776.2025.2467679","url":null,"abstract":"<p><strong>Introduction: </strong>Metabotropic glutamate receptor 4 (mGluR4) regulates disease by modulating neurotransmitter release and synaptic plasticity and has been implicated in various diseases, including neurodegenerative disorders and psychiatric conditions, where its dysregulation can impact synaptic function and neuronal signaling.</p><p><strong>Areas covered: </strong>This review covers the patents and key literature concerning mGluR4 PAMs by utilizing the search engines: SciFinder, Google Patents, and PubMed from 2017 to 2024. It summarizes the key exemplified compounds, relevant SAR, and key biological data presented in the patents and primary literature. The key findings and potential path forward are also discussed.</p><p><strong>Expert opinion: </strong>The mGluR4 receptor serves as a novel target for the treatment of neurodegenerative disorders (namely Parkinson's disease), multiple sclerosis, and chronic pain along with other brain disorders. Two compounds have been advanced to early-stage clinical trials from Prexton Therapeutics and Appello Pharmaceuticals. The first compound from Prexton failed due to efficacy and the Appello compound has yet to have results disclosed. The results from this trial will be an important test for whether future mGluR4 PAMs are advanced into clinical trials.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"463-475"},"PeriodicalIF":5.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048291/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143413897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}