Folia Biologica最新文献

筛选
英文 中文
CD14 Polymorphism Is Not Associated with SARS-CoV-2 Infection in Central European Population. 中欧人群的 CD14 多态性与 SARS-CoV-2 感染无关
IF 0.6 4区 医学
Folia Biologica Pub Date : 2023-01-01 DOI: 10.14712/fb2023069050181
Jaroslav A Hubáček, Tom Philipp, Ondřej Májek, Dana Dlouhá, Věra Adámková, Ladislav Dušek
{"title":"CD14 Polymorphism Is Not Associated with SARS-CoV-2 Infection in Central European Population.","authors":"Jaroslav A Hubáček, Tom Philipp, Ondřej Májek, Dana Dlouhá, Věra Adámková, Ladislav Dušek","doi":"10.14712/fb2023069050181","DOIUrl":"https://doi.org/10.14712/fb2023069050181","url":null,"abstract":"<p><p>A 2021 in silico study highlighted an association between the CD14 polymorphism rs2569190 and increased susceptibility to SARS-CoV-2, which causes coronavirus disease 2019 (COVID-19). The aim of our study was to confirm this finding. We analysed the CD14 polymorphism (C→T; rs2569190) in 516 individuals who tested positive for SARS-CoV-2, with differing disease severity (164 asymptomatic, 245 symptomatic, and 107 hospitalized). We then compared these patients with a sample from the general population consisting of 3,037 individuals using a case-control study design. In comparison with carriers of the C allele, TT homozygotes accounted for 21.7 % of controls and 20.5 % in SARS-CoV-2-positive individuals (P = 0.48; OR; 95 % CI - 0.92; 0.73-1.16). No significant differences in the distribution of genotypes were found when considering co-dominant and recessive genetic models or various between-group comparisons. The CD14 polymorphism is unlikely to be an important predictor of COVID-19 in the Caucasian population in Central Europe.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"69 5-6","pages":"181-185"},"PeriodicalIF":0.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140850106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early-Onset Neonatal Sepsis: Inflammatory Biomarkers and MicroRNA as Potential Diagnostic Tools in Preterm Newborns. 早产新生儿败血症:作为早产新生儿潜在诊断工具的炎症生物标记物和 MicroRNA。
IF 0.6 4区 医学
Folia Biologica Pub Date : 2023-01-01 DOI: 10.14712/fb2023069050173
Petr Janec, Marek Mojžíšek, Martin Pánek, Martin Haluzík, Jan Živný, Jan Janota
{"title":"Early-Onset Neonatal Sepsis: Inflammatory Biomarkers and MicroRNA as Potential Diagnostic Tools in Preterm Newborns.","authors":"Petr Janec, Marek Mojžíšek, Martin Pánek, Martin Haluzík, Jan Živný, Jan Janota","doi":"10.14712/fb2023069050173","DOIUrl":"https://doi.org/10.14712/fb2023069050173","url":null,"abstract":"<p><p>Mortality and morbidity of newborns with sepsis can be improved by early and accurate diagnosis and targeted therapy. To evaluate the early molecular events associated with inflammation and infection, we evaluated markers of endothelial activation and injury and circulating plasma miRNAs in preterm newborns with sepsis. The study group consisted of newborns with gestational age ≤ 32 weeks, with culture-positive early-onset neonatal sepsis (sepsis group, N = 8), and as a control group, we enrolled newborns without sepsis (control group, N = 12). Soluble markers of inflammation were measured using Luminex-based multiplex assay. Platelet-free plasma RNA was used to construct the library for miRNA sequencing analysis. Normalized counts were calculated and used to measure differential expression of individual detected miRNAs. We found a significant increase of interleukin 18 (IL-18) in the cord blood of the sepsis group (mean ± SEM, 104.7 ± 30.4 pg/ml vs 52.7 ± 5.6 pg/ml, P = 0.02). In peripheral blood of sepsis group patients, we found a significant increase of VEGF-A compared to controls (196.0 ± 70.5 pg/ml vs 59.6 ± 8.5 pg/ml, P = 0.02). In the cord blood plasma, eight miRNAs had significantly differential expression (P &lt; 0.05), four miRNAs were up-regulated and four miRNAs down-regulated. In peripheral blood plasma, all nine miRNAs with significant differential expression were up-regulated. In conclusion, in early-onset neonatal sepsis, IL-18 and VEGF-A might be considered in diagnostic workup. Early-onset sepsis in preterm newborns is associated with significant changes in the circulating miRNA pattern.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"69 5-6","pages":"173-180"},"PeriodicalIF":0.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Up-regulation of MiR-146b-5p Inhibits Fibrotic Lung Pericytes via Inactivation of the Notch1/PDGFRβ/ROCK1 Pathway. MiR-146b-5p上调通过Notch1/PDGFRβ/ROCK1通路失活抑制纤维化肺周细胞
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
W Shuai, Q Chen, X Zhou
{"title":"Up-regulation of MiR-146b-5p Inhibits Fibrotic Lung Pericytes via Inactivation of the Notch1/PDGFRβ/ROCK1 Pathway.","authors":"W Shuai,&nbsp;Q Chen,&nbsp;X Zhou","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Lung fibrosis is a serious human pathology. MiR-146b-5p is down-regulated in idiopathic pulmonary fibrosis, and the Notch1/PDGFRβ/ROCK1 pathway is activated. However, the relation between miR-146b-5p and the Notch1/PDGFRβ/ROCK1 pathway in lung fibrosis remains unclear. To investigate the function of miR-146b-5p in lung fibrosis, an in vivo model of lung fibrosis was established in mice by bleomycin. The fibrosis in lung tissues of mice was observed by HE, Masson and Sirius Red staining. Lung pericytes were isolated and identified by fluorescence microscopy. Immunofluorescence staining and Western blot were used to investigate the expression of desmin, NG2, collagen I and α-SMA. CCK8 assay was used to assess the cell viability, and flow cytometry was performed to evaluate the cell cycle in pericytes. Furthermore, the correlation between miR-146b-5p and Notch1 was analysed by Spearman analysis. The mechanism by which miR-146b-5p affects pericytes and lung fibrosis via the Notch1/ PDGFRβ/ROCK1 pathway was explored by RT-qPCR, Western blot, immunofluorescence staining and dual luciferase reporter gene assay. In bleomycin-treated mice, miR-146b-5p was down-regulated, while Notch1 was up-regulated. Up-regulation of miR-146b-5p significantly inhibited the viability and induced G1 phase arrest of lung pericytes. MiR-146b-5p mimics up-regulated miR-146b-5p, desmin, and NG2 and down-regulated α-SMA and collagen I in the lung pericytes. Additionally, miR-146b-5p was negatively correlated with Notch1, and miR-146b-5p interacted with Notch1. Over-expression of miR-146b-5p inactivated the Notch1/PDGFRβ/ROCK1 pathway. Our results indicate that up-regulation of miR-146b-5p inhibits fibrosis in lung pericytes via modulation of the Notch1/PDGFRβ/ROCK1 pathway. Thus, our study might provide a novel target against lung fibrosis.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 5-6","pages":"180-188"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9614729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic Study of Macranthoside B Effects on Apoptotic Cell Death in Human Cervical Adenocarcinoma Cells. 大葛苷B对人宫颈腺癌细胞凋亡细胞死亡的影响机制研究。
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
Y Li, M Li, K Ahmed, J Yang, L Song, Z G Cui, Y Hiraku
{"title":"Mechanistic Study of Macranthoside B Effects on Apoptotic Cell Death in Human Cervical Adenocarcinoma Cells.","authors":"Y Li,&nbsp;M Li,&nbsp;K Ahmed,&nbsp;J Yang,&nbsp;L Song,&nbsp;Z G Cui,&nbsp;Y Hiraku","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Macranthoside B (MB) is a triterpenoid saponin extracted from Lonicera macranthoides, a traditional Chinese medicine. In the current study, we investigated the anticancer potential of MB in various cancer cells and elucidated its underlying mechanisms. MB exposure inhibited cell proliferation, induced mitochondrial membrane potential (MMP) loss, increased sub-G1 accumulation, and resulted in cleavage of caspase-3 and PARP, which are reflective of apoptosis. In HeLa cells, MB induced down-regulation of SOD2 and GPx1, phosphorylation of Akt and PDK1, and thus promoted ROS-mediated apoptosis. This was further supported by the protection of sub-G1 accumulation, MMP loss, cleavage of caspase-3 and PARP in the presence of N-acetylcysteine (NAC). Additionally, MB induced cell death via down-regulation of ubiquitin-like with PHD and ringfinger domains 1 (UHRF1) and Bcl-xL. Taken together, this study provides a new insight into the apoptosis- inducing potential of MB, and its molecular mechanisms are associated with an increase in oxidative stress and inhibition of the PDK1/Akt pathway.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 5-6","pages":"189-200"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9916904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chondrosarcoma with Target-Like Chondrocytes: Update on Molecular Profiling and Specific Morphological Features. 带有靶样软骨细胞的软骨肉瘤:分子谱和特定形态特征的最新进展。
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
C Povýšil, J Hojný, M Kaňa
{"title":"Chondrosarcoma with Target-Like Chondrocytes: Update on Molecular Profiling and Specific Morphological Features.","authors":"C Povýšil,&nbsp;J Hojný,&nbsp;M Kaňa","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The original article was published in Folia Biologica (Praha) Volume 68, No. 3 (2022), 112-124.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 5-6","pages":"112-124"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10454539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Docosahexaenoic Acid Reverses Epithelial-Mesenchymal Transition and Drug Resistance by Impairing the PI3K/AKT/ Nrf2/GPX4 Signalling Pathway in Docetaxel-Resistant PC3 Prostate Cancer Cells. 二十二碳六烯酸通过破坏多西他赛耐药PC3前列腺癌细胞的PI3K/AKT/ Nrf2/GPX4信号通路逆转上皮-间质转化和耐药
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
Z C Shao, B H Zhu, A F Huang, M Q Su, L J An, Z P Wu, Y J Jiang, H Guo, X-Q Han, C-M Liu
{"title":"Docosahexaenoic Acid Reverses Epithelial-Mesenchymal Transition and Drug Resistance by Impairing the PI3K/AKT/ Nrf2/GPX4 Signalling Pathway in Docetaxel-Resistant PC3 Prostate Cancer Cells.","authors":"Z C Shao,&nbsp;B H Zhu,&nbsp;A F Huang,&nbsp;M Q Su,&nbsp;L J An,&nbsp;Z P Wu,&nbsp;Y J Jiang,&nbsp;H Guo,&nbsp;X-Q Han,&nbsp;C-M Liu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Drug resistance is a serious problem in cancer therapy. Growing evidence has shown that docosahexaenoic acid has anti-inflammatory and chemopreventive abilities. Studies have shown that autophagy inhibition and ferroptosis are promising therapeutic strategies for overcoming multidrug resistance. This study was aimed to examine whether docosahexaenoic acid (DHA) could reverse docetaxel resistance in prostate cancer cells. Cell survival was examined by MTT and colony formation. Protein expression was determined by Western blot. Reactive oxygen species (ROS) production was measured by flow cytometry. DHA displayed anti-cancer effects on proliferation, colony formation, migration, apoptosis, autophagy and epithelial mesenchymal transition. Glutathione-S-transferase π is an enzyme that plays an important role in drug resistance. DHA inhibited GSTπ protein expression and induced cytoprotective autophagy by regulating the PI3K/AKT signalling pathway in PC3R cells. DHA combined with PI3K inhibitor (LY294002) enhanced apoptosis by alleviating the expression of LC3B, (pro-) caspase- 3 and (uncleaved) PARP. DHA induced ferroptosis by attenuating the expression of glutathione peroxidase 4 (GPX4) and nuclear erythroid 2-related factor 2 (Nrf2). DHA-treated PC3R cells produced ROS. The ROS and cytotoxicity were reversed by treatment with ferrostatin-1. DHA combined with docetaxel inhibited EMT by regulating the expression of E-cadhein and N-cadherin. In summary, DHA reversed drug resistance and induced cytoprotective autophagy and ferroptosis by regulating the PI3K/AKT/Nrf2/GPX4 signalling pathway in PC3R cells. We propose that DHA could be developed as a chemosensitizer and that the PI3K/AKT /Nrf2/GPX4 signalling pathway might be a promising therapeutic target for overcoming cancer drug resistance.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 2","pages":"59-71"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40688789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RTKN2 Enhances Radioresistance in Gastric Cancer through Regulating the Wnt/β-Catenin Signalling Pathway. RTKN2通过调节Wnt/β-Catenin信号通路增强胃癌放射耐药
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
H-G Zhao, J-J Yin, X Chen, J Wu, W Wang, L-W Tang
{"title":"RTKN2 Enhances Radioresistance in Gastric Cancer through Regulating the Wnt/β-Catenin Signalling Pathway.","authors":"H-G Zhao,&nbsp;J-J Yin,&nbsp;X Chen,&nbsp;J Wu,&nbsp;W Wang,&nbsp;L-W Tang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Adjuvant therapy and radiotherapy improves the survival of patients with metastatic and locally advanced gastric cancer (GC). However, the resistance to radiotherapy limits its clinical usage. Rhotekin 2 (RTKN2) functions as an oncogene and confers resistance to ultraviolet B-radiation and apoptosis- inducing agents. Here, the role of RTKN2 in radiosensitivity of GC cell lines was investigated. RTKN2 was found to be elevated in GC tissues and cells. A series of functional assays revealed that overexpression of RTKN2 induced GC cell proliferation, promoted GC cell migration and invasion, while inhibiting GC cell apoptosis. However, silence of RTKN2 promoted GC cell apoptosis, while repressing GC cell proliferation, invasion and migration. GC cells were exposed to irradiation, and data from cell survival and apoptotic assays showed that knock-down of RTKN2 enhanced radiosensitivity of GC through up-regulation of apoptosis and down-regulation of proliferation in irradiation-exposed GC cells. Moreover, the protein expression of β-catenin and c-Myc in GC cells was enhanced by RTKN2 over-expression, but reduced by RTKN2 silence. Interference of RTKN2 down-regulated nuclear β-catenin expression, while up-regulating cytoplasmic β-catenin in GC. In conclusion, RTKN2 contributed to cell growth and radioresistance in GC through activation of Wnt/β-catenin signalling.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 1","pages":"33-39"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33489824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Molecular Profiles of Bone Marrow-Derived Osteoblasts at the Single-Cell Level. 单细胞水平骨髓源性成骨细胞的动态分子图谱。
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
M Cao, J Xie, Y Hu, X Gao, Z Xie
{"title":"Dynamic Molecular Profiles of Bone Marrow-Derived Osteoblasts at the Single-Cell Level.","authors":"M Cao,&nbsp;J Xie,&nbsp;Y Hu,&nbsp;X Gao,&nbsp;Z Xie","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Osteogenesis is an important process of bone metabolism, and abnormal osteogenesis leads to various skeletal system diseases. Osteoblasts, the main cells involved in bone formation, are central elements in the study of bone metabolic diseases. Single-cell RNA sequencing is an important tool for studying the transcriptome of cells and can help to elucidate various cellular and molecular functions at the single-cell level, providing new avenues for life science research. Here we explore the heterogeneity of osteoblasts and try to reveal the developmental trajectory of osteoblasts, thereby contributing to efforts to describe the mechanism of osteogenesis. In this study, single-cell sequencing data of murine bone marrow cells were used to identify osteoblasts. Finally, osteoblasts were divided into four groups, each differing in characteristic genes and signal pathways. We also identify clues of the changes of some genes in the process of osteoclast formation, providing directions for further study. Collectively, our findings suggest that bone marrow osteoblasts can be divided into several subgroups, which represent different stages of cells, and that the specific genes of each subgroup respond to the molecular mechanisms of cell development. This data will likely be of great help in resolving diseases of the skeletal system.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 3","pages":"97-104"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10611248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyphenols of Antibacterial Potential - May They Help in Resolving Some Present Hurdles in Medicine? 多酚具有抗菌潜力——它们是否有助于解决目前医学上的一些障碍?
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
K Zapletal, G Machnik, B Okopień
{"title":"Polyphenols of Antibacterial Potential - May They Help in Resolving Some Present Hurdles in Medicine?","authors":"K Zapletal,&nbsp;G Machnik,&nbsp;B Okopień","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The phenomenon of antibiotic resistance has been recognized as one of the greatest threats to humanity. Therefore, there is an enormous need to introduce new antibiotics to the medical practice that will effectively eradicate the resistant bacterial strains threatening human health and life. One solution currently being considered as an alternative to antibiotics involves secondary metabolites of plants that can be used in modern antibacterial therapy. Polyphenols represent a broad and diversified group of plant-derived aromatic compounds. Their antibacterial potential has been recognized via specific mechanisms of action, e.g., by inhibition of bacterial biofilm formation, through synergistic effects with the action of currently used antibiotics, and by inhibition of the activity of bacterial virulence factors.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 3","pages":"87-96"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10618709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TRPM7 Elicits Proliferation and Differentiation of Human Lens Epithelial Cells through the TGF-β/Smad Pathways. TRPM7通过TGF-β/Smad通路诱导人晶状体上皮细胞增殖和分化
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
G Yang, Y Wu, S Tang
{"title":"TRPM7 Elicits Proliferation and Differentiation of Human Lens Epithelial Cells through the TGF-β/Smad Pathways.","authors":"G Yang,&nbsp;Y Wu,&nbsp;S Tang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Epithelial-mesenchymal transition (EMT) plays a crucial role in the development of cataract. This study aimed to explore the effects of TRPM7 on the proliferation and differentiation of human lens epithelial cells. TRPM7 was over-expressed in LECs treated with TGF-β2. Down-regulation of TRPM7 attenuated the increase in cell viability and cell proliferation induced by TGF-β2. The LEC migration induced by TGF-β2 was also repressed by down-regulation of TRPM7. Epithelial-specific protein E-cadherin was up-regulated through knock-down of TRPM7. EMT-specific proteins, α-SMA, fibronectin and vimentin, were down-regulated through knockdown of TRPM7. Moreover, phosphorylation of Smad2 and Smad3 was also prevented by inhibition of TRPM7. Therefore, TRPM7 elicited LEC proliferation and EMT through enhancing activation of the TGF-β/Smad pathways, implying a new therapeutic target for cataract.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 2","pages":"72-77"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40688790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信