Folia Biologica最新文献

筛选
英文 中文
Docosahexaenoic Acid Reverses Epithelial-Mesenchymal Transition and Drug Resistance by Impairing the PI3K/AKT/ Nrf2/GPX4 Signalling Pathway in Docetaxel-Resistant PC3 Prostate Cancer Cells. 二十二碳六烯酸通过破坏多西他赛耐药PC3前列腺癌细胞的PI3K/AKT/ Nrf2/GPX4信号通路逆转上皮-间质转化和耐药
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
Z C Shao, B H Zhu, A F Huang, M Q Su, L J An, Z P Wu, Y J Jiang, H Guo, X-Q Han, C-M Liu
{"title":"Docosahexaenoic Acid Reverses Epithelial-Mesenchymal Transition and Drug Resistance by Impairing the PI3K/AKT/ Nrf2/GPX4 Signalling Pathway in Docetaxel-Resistant PC3 Prostate Cancer Cells.","authors":"Z C Shao,&nbsp;B H Zhu,&nbsp;A F Huang,&nbsp;M Q Su,&nbsp;L J An,&nbsp;Z P Wu,&nbsp;Y J Jiang,&nbsp;H Guo,&nbsp;X-Q Han,&nbsp;C-M Liu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Drug resistance is a serious problem in cancer therapy. Growing evidence has shown that docosahexaenoic acid has anti-inflammatory and chemopreventive abilities. Studies have shown that autophagy inhibition and ferroptosis are promising therapeutic strategies for overcoming multidrug resistance. This study was aimed to examine whether docosahexaenoic acid (DHA) could reverse docetaxel resistance in prostate cancer cells. Cell survival was examined by MTT and colony formation. Protein expression was determined by Western blot. Reactive oxygen species (ROS) production was measured by flow cytometry. DHA displayed anti-cancer effects on proliferation, colony formation, migration, apoptosis, autophagy and epithelial mesenchymal transition. Glutathione-S-transferase π is an enzyme that plays an important role in drug resistance. DHA inhibited GSTπ protein expression and induced cytoprotective autophagy by regulating the PI3K/AKT signalling pathway in PC3R cells. DHA combined with PI3K inhibitor (LY294002) enhanced apoptosis by alleviating the expression of LC3B, (pro-) caspase- 3 and (uncleaved) PARP. DHA induced ferroptosis by attenuating the expression of glutathione peroxidase 4 (GPX4) and nuclear erythroid 2-related factor 2 (Nrf2). DHA-treated PC3R cells produced ROS. The ROS and cytotoxicity were reversed by treatment with ferrostatin-1. DHA combined with docetaxel inhibited EMT by regulating the expression of E-cadhein and N-cadherin. In summary, DHA reversed drug resistance and induced cytoprotective autophagy and ferroptosis by regulating the PI3K/AKT/Nrf2/GPX4 signalling pathway in PC3R cells. We propose that DHA could be developed as a chemosensitizer and that the PI3K/AKT /Nrf2/GPX4 signalling pathway might be a promising therapeutic target for overcoming cancer drug resistance.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 2","pages":"59-71"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40688789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RTKN2 Enhances Radioresistance in Gastric Cancer through Regulating the Wnt/β-Catenin Signalling Pathway. RTKN2通过调节Wnt/β-Catenin信号通路增强胃癌放射耐药
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
H-G Zhao, J-J Yin, X Chen, J Wu, W Wang, L-W Tang
{"title":"RTKN2 Enhances Radioresistance in Gastric Cancer through Regulating the Wnt/β-Catenin Signalling Pathway.","authors":"H-G Zhao,&nbsp;J-J Yin,&nbsp;X Chen,&nbsp;J Wu,&nbsp;W Wang,&nbsp;L-W Tang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Adjuvant therapy and radiotherapy improves the survival of patients with metastatic and locally advanced gastric cancer (GC). However, the resistance to radiotherapy limits its clinical usage. Rhotekin 2 (RTKN2) functions as an oncogene and confers resistance to ultraviolet B-radiation and apoptosis- inducing agents. Here, the role of RTKN2 in radiosensitivity of GC cell lines was investigated. RTKN2 was found to be elevated in GC tissues and cells. A series of functional assays revealed that overexpression of RTKN2 induced GC cell proliferation, promoted GC cell migration and invasion, while inhibiting GC cell apoptosis. However, silence of RTKN2 promoted GC cell apoptosis, while repressing GC cell proliferation, invasion and migration. GC cells were exposed to irradiation, and data from cell survival and apoptotic assays showed that knock-down of RTKN2 enhanced radiosensitivity of GC through up-regulation of apoptosis and down-regulation of proliferation in irradiation-exposed GC cells. Moreover, the protein expression of β-catenin and c-Myc in GC cells was enhanced by RTKN2 over-expression, but reduced by RTKN2 silence. Interference of RTKN2 down-regulated nuclear β-catenin expression, while up-regulating cytoplasmic β-catenin in GC. In conclusion, RTKN2 contributed to cell growth and radioresistance in GC through activation of Wnt/β-catenin signalling.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 1","pages":"33-39"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33489824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Molecular Profiles of Bone Marrow-Derived Osteoblasts at the Single-Cell Level. 单细胞水平骨髓源性成骨细胞的动态分子图谱。
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
M Cao, J Xie, Y Hu, X Gao, Z Xie
{"title":"Dynamic Molecular Profiles of Bone Marrow-Derived Osteoblasts at the Single-Cell Level.","authors":"M Cao,&nbsp;J Xie,&nbsp;Y Hu,&nbsp;X Gao,&nbsp;Z Xie","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Osteogenesis is an important process of bone metabolism, and abnormal osteogenesis leads to various skeletal system diseases. Osteoblasts, the main cells involved in bone formation, are central elements in the study of bone metabolic diseases. Single-cell RNA sequencing is an important tool for studying the transcriptome of cells and can help to elucidate various cellular and molecular functions at the single-cell level, providing new avenues for life science research. Here we explore the heterogeneity of osteoblasts and try to reveal the developmental trajectory of osteoblasts, thereby contributing to efforts to describe the mechanism of osteogenesis. In this study, single-cell sequencing data of murine bone marrow cells were used to identify osteoblasts. Finally, osteoblasts were divided into four groups, each differing in characteristic genes and signal pathways. We also identify clues of the changes of some genes in the process of osteoclast formation, providing directions for further study. Collectively, our findings suggest that bone marrow osteoblasts can be divided into several subgroups, which represent different stages of cells, and that the specific genes of each subgroup respond to the molecular mechanisms of cell development. This data will likely be of great help in resolving diseases of the skeletal system.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 3","pages":"97-104"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10611248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyphenols of Antibacterial Potential - May They Help in Resolving Some Present Hurdles in Medicine? 多酚具有抗菌潜力——它们是否有助于解决目前医学上的一些障碍?
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
K Zapletal, G Machnik, B Okopień
{"title":"Polyphenols of Antibacterial Potential - May They Help in Resolving Some Present Hurdles in Medicine?","authors":"K Zapletal,&nbsp;G Machnik,&nbsp;B Okopień","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The phenomenon of antibiotic resistance has been recognized as one of the greatest threats to humanity. Therefore, there is an enormous need to introduce new antibiotics to the medical practice that will effectively eradicate the resistant bacterial strains threatening human health and life. One solution currently being considered as an alternative to antibiotics involves secondary metabolites of plants that can be used in modern antibacterial therapy. Polyphenols represent a broad and diversified group of plant-derived aromatic compounds. Their antibacterial potential has been recognized via specific mechanisms of action, e.g., by inhibition of bacterial biofilm formation, through synergistic effects with the action of currently used antibiotics, and by inhibition of the activity of bacterial virulence factors.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 3","pages":"87-96"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10618709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TRPM7 Elicits Proliferation and Differentiation of Human Lens Epithelial Cells through the TGF-β/Smad Pathways. TRPM7通过TGF-β/Smad通路诱导人晶状体上皮细胞增殖和分化
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
G Yang, Y Wu, S Tang
{"title":"TRPM7 Elicits Proliferation and Differentiation of Human Lens Epithelial Cells through the TGF-β/Smad Pathways.","authors":"G Yang,&nbsp;Y Wu,&nbsp;S Tang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Epithelial-mesenchymal transition (EMT) plays a crucial role in the development of cataract. This study aimed to explore the effects of TRPM7 on the proliferation and differentiation of human lens epithelial cells. TRPM7 was over-expressed in LECs treated with TGF-β2. Down-regulation of TRPM7 attenuated the increase in cell viability and cell proliferation induced by TGF-β2. The LEC migration induced by TGF-β2 was also repressed by down-regulation of TRPM7. Epithelial-specific protein E-cadherin was up-regulated through knock-down of TRPM7. EMT-specific proteins, α-SMA, fibronectin and vimentin, were down-regulated through knockdown of TRPM7. Moreover, phosphorylation of Smad2 and Smad3 was also prevented by inhibition of TRPM7. Therefore, TRPM7 elicited LEC proliferation and EMT through enhancing activation of the TGF-β/Smad pathways, implying a new therapeutic target for cataract.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 2","pages":"72-77"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40688790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetics of T2DM and Its Chronic Complications: Are We Any Closer to the Individual Prediction of Genetic Risk? 2型糖尿病及其慢性并发症的遗传学:我们是否更接近于遗传风险的个体预测?
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
D Galuška, L Dlouhá, J A Hubáček, K Kaňová
{"title":"Genetics of T2DM and Its Chronic Complications: Are We Any Closer to the Individual Prediction of Genetic Risk?","authors":"D Galuška,&nbsp;L Dlouhá,&nbsp;J A Hubáček,&nbsp;K Kaňová","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM) is a complex disease that has risen in global prevalence over recent decades, resulting in concomitant and enormous socio-economic impacts. In addition to the well-documented risk factors of obesity, poor dietary habits and sedentary lifestyles, genetic background plays a key role in the aetiopathogenesis of diabetes and the development of associated micro- and macrovascular complications. Recent advances in genomic research, notably next-generation sequencing and genome- wide association studies, have greatly improved the efficiency with which genetic backgrounds to complex diseases are analysed. To date, several hundred single-nucleotide polymorphisms have been associated with T2DM or its complications. Given the polygenic background to T2DM (and numerous other complex diseases), the degree of genetic predisposition can be treated as a \"continuous trait\" quantified by a genetic risk score. Focusing mainly on the Central European population, this review summarizes recent state-of-the-art methods that have enabled us to better determine the genetic architecture of T2DM and the utility of genetic risk scores in disease prediction.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 5-6","pages":"159-179"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9916905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antigen Presentation and Proteome Study of Exosomes Secreted by Co-Culture of Macrophages and Talaromyces marneffei. 巨噬细胞与马尔尼菲talaromyis marneffei共培养外泌体抗原呈递及蛋白质组学研究。
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
Z Xie, L L Li, G J Wei, C Wang, D H Zhang, L Wei
{"title":"Antigen Presentation and Proteome Study of Exosomes Secreted by Co-Culture of Macrophages and Talaromyces marneffei.","authors":"Z Xie,&nbsp;L L Li,&nbsp;G J Wei,&nbsp;C Wang,&nbsp;D H Zhang,&nbsp;L Wei","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>It is known that intracellular pathogens interact and react with the cellular immune system through exosomes produced by macrophages. This study aimed to determine whether co-culture of macrophages and Talaromyces marneffei induces exosomes and leads to immune responses. T. marneffei was incubated to collect conidia, co-cultured with human macrophages, which then induced exosomes. In cellular experiments, after extraction and purification, the exosomes were then observed by electron microscopy and detected by flow cytometry and mass spectrometry. In animal experiments, flow cytometry and enzyme-linked immunosorbent assay were used to examine whether exosomes were antigenpresenting. The results showed that purified exosomes produced a pro-inflammatory response and stimulated production of TNF-α in non-fungal-treated macrophages. Protein mass spectrometry analysis of exosomes also indicated their potential ability to activate the internal immune response system and the pro-inflammatory response. Translation and ribosomes were the most abundant GO terms in proteins, and the most relevant KEGG pathway was the biosynthesis of secondary metabolites. Furthermore, in vivo experiments revealed that exosomes induced activation of lymphocytes and increased expression of TNF-α and IL-12 in the lung, mediastinum, and spleen area. In conclusion, exosomes can be released by co-culture of T. marneffei and macrophages, having antigen-presenting functions, promoting macrophage inflammation, and initiating adaptive immune responses. These processes are inextricably linked to the translation of secondary metabolites, ribosomes and biosynthesis.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 4","pages":"125-132"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10847154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C-Phycocyanin Suppresses Cell Proliferation and Promotes Apoptosis by Regulating the AMPK Pathway in NCL-H292 Non-Small Cell Lung Cancer Cells. c -藻蓝蛋白通过调控AMPK通路抑制NCL-H292非小细胞肺癌细胞增殖和促进凋亡
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
H Chaowen, H Dongxuan, H Dongsheng, P Jianfeng, Y Fan, C Yahui, L Xiaohua
{"title":"C-Phycocyanin Suppresses Cell Proliferation and Promotes Apoptosis by Regulating the AMPK Pathway in NCL-H292 Non-Small Cell Lung Cancer Cells.","authors":"H Chaowen,&nbsp;H Dongxuan,&nbsp;H Dongsheng,&nbsp;P Jianfeng,&nbsp;Y Fan,&nbsp;C Yahui,&nbsp;L Xiaohua","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) results in high mortality and has gained increasing attention. C-Phycocyanin (C-PC) has been identified as a potential therapeutic inhibitor for NSCLC, but its underlying mechanism remains obscure. The gene expression of the long noncoding RNA neighbour of BRCAI RNA 2 (NBR2) in NSCLC cells was evaluated by quantitative reverse transcription-PCR. The cell capacity for proliferation and migration was examined by EdU and wound-healing assays. Furthermore, the viability and apoptosis of cells was measured with CCK-8 and annexin V/PI, respectively. Next, the protein level of activation of adenosine monophosphate- activated protein kinase and the rapamycin kinase (mTOR) signalling pathway-associated molecules was evaluated by western blotting. H292 cells were pre-treated with C-PC or transfected with plasmids encoding NBR2 or the shNBR2 plasmid, to over-express or knock down NBR2 expression, respectively. NBR2 expression was robustly down-regulated in NSCLC cell lines compared with a normal cell line (BEAS-2B). NBR2 over-expression inhibited migration and promoted apoptosis of H292 cells. Treatment of H292 cells with C-PC enhanced NBR2 levels in a dose- and time-dependent manner. Downregulation of NBR2 in H292 cells inhibited the activity of C-PC on cell proliferation, viability and clone formation. Further mechanistic investigation showed that the down-regulation of NBR2 abolished the modulatory effects of C-PC on the AMPK/mTOR signalling pathway. In conclusion, C-PC inhibits H292 cell growth by enhancing the NBR2/AMPK signalling pathway.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 1","pages":"16-24"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33489822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validation of the Anti-Inflammatory Effect of Tenebrio Molitor Larva Oil in a Colitis Mouse Model. 黄粉虫幼虫油在结肠炎小鼠模型中的抗炎作用验证。
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
B M Park, J Lee, B G Jung, B J Lee
{"title":"Validation of the Anti-Inflammatory Effect of Tenebrio Molitor Larva Oil in a Colitis Mouse Model.","authors":"B M Park,&nbsp;J Lee,&nbsp;B G Jung,&nbsp;B J Lee","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Ulcerative colitis is caused by various external factors and is an inflammatory disease that causes decreased intestinal function. Tenebrio molitor larvae contain more than 30 % fat, and the fat component consists of 45 % oleic acid, 20 % linoleic acid and 20 % polyunsaturated fatty acids. In this study, after administering Tenebrio molitor larva oil (TMLO) in a dextran sodium sulphate (DSS)-induced ulcerative colitis mouse model, the pathological findings and inflammatory markers of colitis were analysed to assess whether a colitis mitigation effect was achieved. In the TMLO-administered group, the colon length increased, the spleen weight decreased, and the body weight increased compared with that in the DSS group. In addition, the disease activity index level decreased, the mRNA expression level of inflammatory cytokines in the colon decreased, and the myeloperoxidase activity level significantly decreased. Also, the activity of the NF-κB pathway involved in the regulation of the inflammatory response was lower in the TMLO group than in the DSS group. Taken together, these results suggest that TMLO suppresses occurrence of acute ulcerative colitis in the DSS mouse model. Therefore, TMLO has the potential to be developed as a health food for the prevention and treatment of ulcerative colitis.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 2","pages":"50-58"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40687848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MicroRNA-214-3p Ameliorates LPS-Induced Cardiomyocyte Injury by Inhibiting Cathepsin B. MicroRNA-214-3p通过抑制组织蛋白酶B改善lps诱导的心肌细胞损伤。
IF 0.6 4区 医学
Folia Biologica Pub Date : 2022-01-01
W Yan, Y Feng, Z Lei, W Kuang, C Long
{"title":"MicroRNA-214-3p Ameliorates LPS-Induced Cardiomyocyte Injury by Inhibiting Cathepsin B.","authors":"W Yan,&nbsp;Y Feng,&nbsp;Z Lei,&nbsp;W Kuang,&nbsp;C Long","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Myocardial injury is a common complication of sepsis. MicroRNA (miRNA) miR-214-3p is protective against myocardial injury caused by sepsis, but its mechanism in lipopolysaccharide (LPS)- induced cardiomyocyte injury is still unclear. An AC16 cell injury model was induced by LPS treatment. Cell Counting Kit-8 and flow cytometry assay showed decreased cell viability and increased apoptosis in LPS-treated AC16 cells. The levels of caspase- 3, Bax, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), myosin 6 (Myh6), myosin 7 (Myh7), reactive oxygen species (ROS), and malondialdehyde (MDA) were increased in LPS-treated AC16 cells, but the levels of Bcl-2 and superoxide dismutase (SOD) were decreased. MiR-214-3p was down-regulated and cathepsin B (CTSB) was upregulated in LPS-treated AC16 cells. At the same time, miR-214-3p could target CTSB and reduce its expression. We also found that a miR-214-3p mimic or CTSB silencing could significantly reduce LPSinduced apoptosis, decrease ROS, MDA, caspase-3, and Bax and increase SOD and Bcl-2. CTSB silencing could significantly reduce ANP, BNP, Myh6, and Myh7 in LPS-treated AC16 cells. The effects of CTSB silencing were reversed by a miR-214-3p inhibitor. In summary, miR-214-3p could inhibit LPSinduced myocardial injury by targeting CTSB, which provides a new idea for myocardial damage caused by sepsis.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 2","pages":"78-85"},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40688791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信