Y Li, M Li, K Ahmed, J Yang, L Song, Z G Cui, Y Hiraku
{"title":"Mechanistic Study of Macranthoside B Effects on Apoptotic Cell Death in Human Cervical Adenocarcinoma Cells.","authors":"Y Li, M Li, K Ahmed, J Yang, L Song, Z G Cui, Y Hiraku","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Macranthoside B (MB) is a triterpenoid saponin extracted from Lonicera macranthoides, a traditional Chinese medicine. In the current study, we investigated the anticancer potential of MB in various cancer cells and elucidated its underlying mechanisms. MB exposure inhibited cell proliferation, induced mitochondrial membrane potential (MMP) loss, increased sub-G1 accumulation, and resulted in cleavage of caspase-3 and PARP, which are reflective of apoptosis. In HeLa cells, MB induced down-regulation of SOD2 and GPx1, phosphorylation of Akt and PDK1, and thus promoted ROS-mediated apoptosis. This was further supported by the protection of sub-G1 accumulation, MMP loss, cleavage of caspase-3 and PARP in the presence of N-acetylcysteine (NAC). Additionally, MB induced cell death via down-regulation of ubiquitin-like with PHD and ringfinger domains 1 (UHRF1) and Bcl-xL. Taken together, this study provides a new insight into the apoptosis- inducing potential of MB, and its molecular mechanisms are associated with an increase in oxidative stress and inhibition of the PDK1/Akt pathway.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"68 5-6","pages":"189-200"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Biologica","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Macranthoside B (MB) is a triterpenoid saponin extracted from Lonicera macranthoides, a traditional Chinese medicine. In the current study, we investigated the anticancer potential of MB in various cancer cells and elucidated its underlying mechanisms. MB exposure inhibited cell proliferation, induced mitochondrial membrane potential (MMP) loss, increased sub-G1 accumulation, and resulted in cleavage of caspase-3 and PARP, which are reflective of apoptosis. In HeLa cells, MB induced down-regulation of SOD2 and GPx1, phosphorylation of Akt and PDK1, and thus promoted ROS-mediated apoptosis. This was further supported by the protection of sub-G1 accumulation, MMP loss, cleavage of caspase-3 and PARP in the presence of N-acetylcysteine (NAC). Additionally, MB induced cell death via down-regulation of ubiquitin-like with PHD and ringfinger domains 1 (UHRF1) and Bcl-xL. Taken together, this study provides a new insight into the apoptosis- inducing potential of MB, and its molecular mechanisms are associated with an increase in oxidative stress and inhibition of the PDK1/Akt pathway.
期刊介绍:
Journal of Cellular and Molecular Biology publishes articles describing original research aimed at the elucidation of a wide range of questions of biology and medicine at the cellular and molecular levels. Studies on all organisms as well as on human cells and tissues are welcome.