Experimental cell research最新文献

筛选
英文 中文
cGAS regulates metabolic reprogramming independently of STING pathway in colorectal cancer cGAS 可独立于 STING 通路调控结直肠癌的代谢重编程。
IF 3.3 3区 生物学
Experimental cell research Pub Date : 2024-11-01 DOI: 10.1016/j.yexcr.2024.114316
Fan Wang , Chao Jiang , Hong-Xia Hui , Ming-Yue Tao , Hai-Xiao Wang , Yuan Sun , Jing Zhu
{"title":"cGAS regulates metabolic reprogramming independently of STING pathway in colorectal cancer","authors":"Fan Wang , Chao Jiang , Hong-Xia Hui , Ming-Yue Tao , Hai-Xiao Wang , Yuan Sun , Jing Zhu","doi":"10.1016/j.yexcr.2024.114316","DOIUrl":"10.1016/j.yexcr.2024.114316","url":null,"abstract":"<div><h3>Background</h3><div>Cyclic GMP-AMP synthase (cGAS) is widely acknowledged for detecting cytosolic chromatin fragments and triggering innate immune responses through the production of the second messenger cGAMP, which subsequently activates the adaptor protein STING. However, the role of cGAS in regulating metabolic reprogramming independently of STING activation has not yet been explored.</div></div><div><h3>Methods</h3><div>Gene set enrichment pathway analysis (GSEA) based on TCGA transcriptomics, combined with Seahorse metabolic analysis of CRC cell lines and human normal colonic mucosa cell line FHC, was performed to profile the metabolic features in CRC. cGAS doxycycline- (dox) inducible knockout (iKO) CRC sublines were generated to investigate the role of cGAS in CRC. Transcriptome and proteome data from COAD cohorts were utilized to evaluate the RNA and protein expression levels of cGAS in COAD tissues and normal colon tissues. Overall survival information of patients with COAD was used to evaluate the prognostic value of cGAS expression. Colony formation assays were conducted to evaluate the clonogenicity of CRC cells under different situations. Flow cytometry detecting the signal of fluorogenic reactive oxygen species (ROS) probes was performed to evaluate the total cellular and mitochondrial oxidative stress level in CRC cells. A propidium iodide (PI) staining assay was used to evaluate the cell death level in CRC cells. Quantitative PCR (qPCR) was conducted to detect the RNA level of STING pathway downstream target genes. Mass spectrometry was used for the identification of novel binding partners of cGAS in CRC cells. Co-immunoprecipitation (co-IP) was conducted to confirm the interaction between cGAS and NDUFA4L2.</div></div><div><h3>Results</h3><div>By integrating metabolic pathway analysis based on TCGA transcriptomics with Seahorse metabolic analysis of a panel CRC cell lines and the human normal colonic mucosa cell line FHC, we demonstrated that CRC cells exhibit typical characteristics of metabolic reprogramming, characterized by a shift from oxidative phosphorylation (OXPHOS) to glycolysis. We found that cGAS is critical for CRC cells to maintain this metabolic switch. Specifically, the suppression of cGAS through siRNA-mediated knockdown or doxycycline-inducible knockout reversed this metabolic switch, resulting in increased OXPHOS activity, elevated production of OXPHOS byproduct reactive oxygen species (ROS), and consequently caused oxidative stress. This disruption induced oxidative stress, ultimately resulting in cell death and reduced cell viability. Moreover, significant upregulation of cGAS in CRC tissues and cell lines and its association with poor prognosis in CRC patients was observed. Subsequently, we demonstrated that the role of cGAS in regulating metabolic reprogramming does not rely on the canonical cGAS-STING pathway. Co-immunoprecipitation combined with mass spectrometry identified NDUFA4L2 as a novel i","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"443 1","pages":"Article 114316"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic modulation of vascular calcification: Looking for comprehending the role of sirt1 and histone acetylation in VSMC phenotypic transition 血管钙化的表观遗传调控:探寻 sirt1 和组蛋白乙酰化在血管内皮细胞表型转变中的作用。
IF 3.3 3区 生物学
Experimental cell research Pub Date : 2024-11-01 DOI: 10.1016/j.yexcr.2024.114311
Geórgia da Silva Feltran , Emerson Araújo Alves dos Santos , Amanda Fantini de Camargo Andrade , Willian Fernando Zambuzzi , Rodrigo Augusto Foganholi da Silva
{"title":"Epigenetic modulation of vascular calcification: Looking for comprehending the role of sirt1 and histone acetylation in VSMC phenotypic transition","authors":"Geórgia da Silva Feltran ,&nbsp;Emerson Araújo Alves dos Santos ,&nbsp;Amanda Fantini de Camargo Andrade ,&nbsp;Willian Fernando Zambuzzi ,&nbsp;Rodrigo Augusto Foganholi da Silva","doi":"10.1016/j.yexcr.2024.114311","DOIUrl":"10.1016/j.yexcr.2024.114311","url":null,"abstract":"<div><div>In light of the complex origins of ectopic vascular calcification and its significant health implications, this study offers a comprehensive exploration of the molecular dynamics governing vascular smooth muscle cells (VSMCs). Focusing on epigenetic modulation, we investigate the transition from a contractile to a calcifying phenotype in VSMCs, with an emphasis on understanding the role of SIRT1. For this purpose, a single batch of human aortic SMCs, used at a specified passage number to maintain consistency, was subjected to calcium and phosphate overload for up to 72 h. Our findings, validated through RT q-PCR, Western blot, immunofluorescence, and DNA methylation analyses, reveal a complex interplay between acetyltransferases and deacetylases during this phenotypic transition. We highlight HAT1A's critical role in histone acetylation regulation and the involvement of HDACs, as evidenced by subcellular localization studies. Moreover, we demonstrate the modulation of SIRT1 expression, a class III deacetylase, during VSMC calcification, underscoring the influence of DNA methylation in this process. Importantly, the study addresses previously unexplored aspects of the dynamic protein expression patterns observed, providing insight into the counterintuitive expressions of key proteins such as Runx2 and osterix. This research underscores the significant impact of epigenetic mechanisms, particularly the modulation of SIRT1, in the transition from a contractile to a calcifying phenotype in VSMCs, offering potential avenues for further exploration in the context of vascular calcification.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"443 1","pages":"Article 114311"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NLRX1 and STING alleviate renal ischemia-reperfusion injury by regulating LC3 lipidation during mitophagy NLRX1和STING通过调节有丝分裂过程中的LC3脂化减轻肾缺血再灌注损伤
IF 3.3 3区 生物学
Experimental cell research Pub Date : 2024-11-01 DOI: 10.1016/j.yexcr.2024.114323
Yinping Liao, Pei Li, Qing Hang, Yang Chong, Wei Long, Xingji Wei, Dong Sun, Ya Liu
{"title":"NLRX1 and STING alleviate renal ischemia-reperfusion injury by regulating LC3 lipidation during mitophagy","authors":"Yinping Liao,&nbsp;Pei Li,&nbsp;Qing Hang,&nbsp;Yang Chong,&nbsp;Wei Long,&nbsp;Xingji Wei,&nbsp;Dong Sun,&nbsp;Ya Liu","doi":"10.1016/j.yexcr.2024.114323","DOIUrl":"10.1016/j.yexcr.2024.114323","url":null,"abstract":"<div><div>Mitophagy significantly influences renal ischemia/reperfusion (I/R) injury and recovery. NLRX1 is recognized for its regulatory role in governing mitochondrial damage, autophagy, and the expression of pro-inflammatory factors. Despite the acknowledged involvement of NLRX1 in these crucial cellular processes, its specific function in renal I/R injury remains unclear. We detected the expression of NLRX1, the cGAS-STING pathway, and autophagy-related proteins using Western Blot analysis. RT-qPCR was utilized to measure the expression of NLRX1 mRNA and cytokines, and changes in mitochondrial DNA (mtDNA) within the cytoplasm. Immunofluorescence was applied to observe alterations in DNA distribution within the cytoplasm. The EtBr drug, which depletes mtDNA, and the Mdivi-1 mitophagy inhibitor, were used to verify the promotion of mitophagy by NLRX1. The results demonstrated that NLRX1 was downregulated after hypoxic/reoxygenation (H/R) injury, and there was an increase in cytoplasmic DNA. NLRX1 overexpression not only reduced IL-1β and IL-6 levels, but also decreased mtDNA in the cytoplasm. Additionally, NLRX1 further increases mitochondrial LC3 lipidation after H/R injury, and this effect is inhibited by Mdivi-1 drugs. The activation of the cGAS-STING pathway after H/R injury is inhibited by EtBr drugs and NLRX1. Co-immunoprecipitation results showed that NLRX1 could bind to STING. Moreover, inhibiting STING reversed NLRX1-induced mitochondrial LC3 lipidation. Our study reveals that NLRX1 can bind to STING to promote mitophagy and inhibits inflammation caused by mtDNA/cGAS/STING signaling.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"443 1","pages":"Article 114323"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional silk fibroin scaffolded co-culture of human neuroblastoma and innate immune cells 人神经母细胞瘤与先天性免疫细胞的三维蚕丝纤维支架共培养
IF 3.3 3区 生物学
Experimental cell research Pub Date : 2024-11-01 DOI: 10.1016/j.yexcr.2024.114289
Katelyn S. Mistretta, Jeannine M. Coburn
{"title":"Three-dimensional silk fibroin scaffolded co-culture of human neuroblastoma and innate immune cells","authors":"Katelyn S. Mistretta,&nbsp;Jeannine M. Coburn","doi":"10.1016/j.yexcr.2024.114289","DOIUrl":"10.1016/j.yexcr.2024.114289","url":null,"abstract":"<div><div>Neuroblastoma (NB) is the most common pediatric extracranial solid tumor. It accounts for 50 % of cancers diagnosed in infants less than 1 year old, and 10 % of all pediatric cancer deaths in the United States. High-risk patients have a less than 50 % 5-year survival rate with current treatment strategies. The complex tumor microenvironment of NB makes the development of treatment strategies for high-risk patients challenging. There is increasing evidence that intratumoral immune suppression plays an important role in the progression and invasion of NB tumors. Few three-dimensional (3D) cancer models include components of the innate immune system. This work develops a preclinical 3D NB-immune co-culture model using SK-N-AS NB cells, NK-92 natural killer cells, and THP-1 derived macrophages, co-cultured on porous 3D silk scaffolds to provide tumor architecture. Conditioned media and indirect co-culturing showed changes in SK-N-AS gene expression associated with immunoregulatory signaling, and changes in NK-92 gene expression that are associated with reduced cytotoxicity. This motivated the development of a 3D direct co-culture system in which NB cells were seeded prior to immune cells to allow incorporation and deposition of extracellular matrix within the construct. Immune cells were then incorporated into the model to achieve direct co-culture with SK-N-AS cells. Changes in THP-1 macrophage polarization toward a more M2-like phenotype were observed in 3D direct co-culture, as well as altered NK-92 cell protein secretion and cytotoxic activity. Preliminary testing of immunotherapeutics within the model was conducted on both NB-macrophage and NB-NK co-cultures, but the model demonstrated limited response to immunotherapeutics. This work lays the foundation for building high-throughput therapeutic screening models for the improved treatment NB and other solid tumors.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"443 1","pages":"Article 114289"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mode of action of sorafenib in MDA-MB-231 breast carcinoma cells involves components of apoptotic, necroptotic and autophagy-dependent cell death pathways 索拉非尼在 MDA-MB-231 乳腺癌细胞中的作用模式涉及细胞凋亡、坏死和依赖自噬的细胞死亡途径。
IF 3.3 3区 生物学
Experimental cell research Pub Date : 2024-11-01 DOI: 10.1016/j.yexcr.2024.114313
Gudapureddy Radha , Pratyush Pragyandipta , Pradeep Kumar Naik , Manu Lopus
{"title":"The mode of action of sorafenib in MDA-MB-231 breast carcinoma cells involves components of apoptotic, necroptotic and autophagy-dependent cell death pathways","authors":"Gudapureddy Radha ,&nbsp;Pratyush Pragyandipta ,&nbsp;Pradeep Kumar Naik ,&nbsp;Manu Lopus","doi":"10.1016/j.yexcr.2024.114313","DOIUrl":"10.1016/j.yexcr.2024.114313","url":null,"abstract":"<div><div>We report the identification of an interesting mode of action by sorafenib (SF) (Nexavar) in triple-negative breast adenocarcinoma MDA-MB-231 cells. The dying cells presented features of apoptosis, such as externalization of phosphatidylserine and cleaved caspase-3, and autophagy-mediated cell death, such as formation of autophagosomes and autolysosomes, the overexpression of LC3-II, and the presence of LAMP1-positive vacuoles, while displaying insufficient autophagic flux. Components of endoplasmic reticulum stress (ER stress; PERK and CHOP) and of necroptosis (p-MLKL) were also elevated considerably. Investigating potential target proteins that could modulate this form of cell death, we next investigated the role of tubulin disruption, which is known to induce necroptosis, apoptosis, and autophagy-dependent cell death. Interactions of SF with purified tubulin were investigated in detail using a combination of cellular and biophysical assays, transmission electron microscopy, and computer simulations. A marked reduction in the intrinsic tryptophan fluorescence of tubulin, a concentration-dependent elevation of anilinonaphthalene sulfonate–tubulin complex fluorescence, electron micrographs of deformed <em>in vitro</em>–assembled microtubules, and disrupted and hyper-stabilized cellular microtubules evinced the ability of SF to target tubulin and disrupt cellular microtubules. Molecular docking and molecular dynamic simulations positioned the drug between the α and β subunits of tubulin with considerable stability (ΔG<sub>bind,</sub> −31.43 kcal/mol), suggesting that drug-induced perturbation of tubulin could contribute to this mode of cell death.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"443 1","pages":"Article 114313"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The involvement of endogenous melatonin in LPS-induced M1-like macrophages and its underlying synthesis mechanism regulated by IRF3 内源性褪黑激素参与 LPS 诱导的 M1 样巨噬细胞及其受 IRF3 调控的合成机制。
IF 3.3 3区 生物学
Experimental cell research Pub Date : 2024-11-01 DOI: 10.1016/j.yexcr.2024.114314
Xuzheng Chen , Zhiguang Zhang , Haobo Huang , Yujie Deng , Zhenguo Xu , Siyan Chen , Ruixiang Zhou , Jun Song
{"title":"The involvement of endogenous melatonin in LPS-induced M1-like macrophages and its underlying synthesis mechanism regulated by IRF3","authors":"Xuzheng Chen ,&nbsp;Zhiguang Zhang ,&nbsp;Haobo Huang ,&nbsp;Yujie Deng ,&nbsp;Zhenguo Xu ,&nbsp;Siyan Chen ,&nbsp;Ruixiang Zhou ,&nbsp;Jun Song","doi":"10.1016/j.yexcr.2024.114314","DOIUrl":"10.1016/j.yexcr.2024.114314","url":null,"abstract":"<div><div>Melatonin (MLT) has been shown to induce polarization of macrophages towards M2-like phenotype and inhibit polarization of macrophages towards M1-like phenotype through exogenous administration, which affects the development of many macrophage polarization-related diseases, such as infectious diseases, cardiovascular diseases, bone diseases, and tumors. However, whether endogenous melatonin has similar influences on macrophage polarization as exogenous melatonin is still under investigation. This study revealed that the process of lipopolysaccharide (LPS) inducing macrophages to polarize towards M1-like phenotype was accompanied by an increase in endogenous MLT secretion. To explore the role of increased endogenous MLT in the polarization process of macrophages, whether similar to the function of exogenous MLT in inhibiting polarization of macrophages towards M1-like phenotype, we established LPS-induced MLT deficiency models <em>in vitro</em> to investigate the effects of endogenous MLT on the secretion of cytokines, co-stimulatory molecules, ROS, and phagocytic function in LPS-induced M1-like macrophages. Additionally, we aimed to elucidate the mechanism by which LPS affects the secretion of endogenous MLT by macrophages. Our results confirm that LPS induces transcription of Aanat through the TLR4/TRIF pathway, consequently facilitating the secretion of MLT by macrophages. In this way, IRF3 is the main transcription factor that regulates Aanat transcription. Endogenous MLT plays a role in inhibiting the polarization of macrophages towards M1 phenotype and delaying cell apoptosis during LPS-induced polarization towards M1 phenotype. This phenomenon may be a form of self-protection that occurs when macrophages engulf pathogens while avoiding oxidative stress and apoptosis caused by LPS. This conclusion clarifies the role of endogenous MLT in the clearance of pathogens by macrophages, providing a theoretical basis for understanding its role in innate immunity.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"443 1","pages":"Article 114314"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protease activated receptor 2 deficiency retards progression of abdominal aortic aneurysms by modulating phenotypic transformation of vascular smooth muscle cells via ERK signaling 蛋白酶激活受体 2 缺乏症通过 ERK 信号调节血管平滑肌细胞的表型转化,从而延缓腹主动脉瘤的进展
IF 3.3 3区 生物学
Experimental cell research Pub Date : 2024-11-01 DOI: 10.1016/j.yexcr.2024.114286
Min Wang , Zhengde Tang , Huasu Zeng , Alian Zhang , Shuying Huang , Jiahan Ke , Lin Gao , Tiantian Zhang , Yue Wang , Alex Chia Yu Chang , Junfeng Zhang , Qizhi Chen , Jun Gu , Changqian Wang
{"title":"Protease activated receptor 2 deficiency retards progression of abdominal aortic aneurysms by modulating phenotypic transformation of vascular smooth muscle cells via ERK signaling","authors":"Min Wang ,&nbsp;Zhengde Tang ,&nbsp;Huasu Zeng ,&nbsp;Alian Zhang ,&nbsp;Shuying Huang ,&nbsp;Jiahan Ke ,&nbsp;Lin Gao ,&nbsp;Tiantian Zhang ,&nbsp;Yue Wang ,&nbsp;Alex Chia Yu Chang ,&nbsp;Junfeng Zhang ,&nbsp;Qizhi Chen ,&nbsp;Jun Gu ,&nbsp;Changqian Wang","doi":"10.1016/j.yexcr.2024.114286","DOIUrl":"10.1016/j.yexcr.2024.114286","url":null,"abstract":"<div><div>Abdominal aortic aneurysm (AAA) is characterized by localized structural deterioration of the aortic wall, leading to progressive dilatation and rupture. Protease activated receptor 2 (PAR2) dependent signaling has been implicated in the pathophysiology of atherosclerosis through the regulation of smooth muscle cell function. However, its role in AAA remains unclear. This study investigates the function and potential mechanism of PAR2 in AAA progression. Angiotensin II (Ang II) and β-aminopropionitrile (BAPN) were administered to wild type (WT) mice to induce AAA. Increased PAR2 expression was observed in the aneurysmal tissues of these mice and in Ang II-treated vascular smooth muscle cells (VSMCs). We demonstrated that PAR2 deficiency markedly inhibited aorta dilatation and vascular remodeling in the AAA model relative to WT mice. Immunohistochemical staining showed significant upregulation of contractile markers and a reduction in synthetic markers in PAR2 knockout mice. Consistent with in vivo results, PAR2 knockdown diminished the effects of Ang II on VSMCs phenotypic switching, resulting in reduced proliferation and migration. Conversely, a PAR2 agonist (SLIGRL) induced the opposite effect, which was partially mitigated by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor (PD98059). This study suggests that PAR2 deficiency restrains aortic expansion and mitigates adverse vascular remodeling in AAA models, mediated in part by the ERK signaling pathway, indicating that PAR2 could be a potential therapeutic target for mitigating AAA development or progression.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"443 1","pages":"Article 114286"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methionine restriction promotes cisplatin sensitivity of gastric cancer resistant cells by down-regulating circ-CDK13 level 限制蛋氨酸可通过下调循环 CDK13 水平促进胃癌耐药细胞对顺铂的敏感性
IF 3.3 3区 生物学
Experimental cell research Pub Date : 2024-11-01 DOI: 10.1016/j.yexcr.2024.114315
Lin Xin , Yong-Hui Zou , Chen-Xi Liu , Hao Lu , Luo-Jun Fan , He-Song Xu , Qi Zhou , Jiang Liu , Zhen- Qi Yue , Jin-Heng Gan
{"title":"Methionine restriction promotes cisplatin sensitivity of gastric cancer resistant cells by down-regulating circ-CDK13 level","authors":"Lin Xin ,&nbsp;Yong-Hui Zou ,&nbsp;Chen-Xi Liu ,&nbsp;Hao Lu ,&nbsp;Luo-Jun Fan ,&nbsp;He-Song Xu ,&nbsp;Qi Zhou ,&nbsp;Jiang Liu ,&nbsp;Zhen- Qi Yue ,&nbsp;Jin-Heng Gan","doi":"10.1016/j.yexcr.2024.114315","DOIUrl":"10.1016/j.yexcr.2024.114315","url":null,"abstract":"<div><h3>Background</h3><div>Methionine restriction (MR) is a research direction in the treatment of gastric cancer (GC). The aim of this study was to investigate the molecular mechanism of MR on enhancing cisplatin (DDP) sensitivity of drug-resistant GC cells.</div></div><div><h3>Methods</h3><div>Twenty pairs of GC tissues and adjacent normal gastric mucosa tissues were collected. DDP-resistant cell lines (KATO/DDP and MKN45/DDP), mouse model of GC and GC patient-derived organoid (PDO) models were established. Lentivirus-mediated METase overexpression was used for MR. Cell viability and apoptosis were detected by MTT assay and flow cytometry. Western blotting was used to detect multi-drug resistance-1 (MDR1), MDR-associated protein 1 (MRP1) eukaryotic initiation factor 4A-Ⅲ (EIF4A3), and METase protein expressions. The levels of circRNAs were detected by qRT-PCR. Tumor volume and weight were measured. The proliferation of tumor cells was detected by immunohistochemical staining.</div></div><div><h3>Results</h3><div>The differentially expressed circRNAs of GC were screened in Gene Expression Omnibus database. MR in KATO/DDP and MKN45/DDP cells significantly down-regulated circ-CDK13 level. Overexpression of circ-CDK13 significantly inhibited apoptosis of sensitive cells (KATO III and MKN45). Interference with circ-CDK13 significantly promoted apoptosis of drug-resistant cells (KATO/DDP and MKN45/DDP). MR enhanced the DDP sensitivity of GC resistant cells, GC PDO and GC mice by down-regulating circ-CDK13. EIF4A3 binds to the downstream flanking sequence of circ-CDK13, and interference with EIF4A3 reduces circ-CDK13 levels, but does not affect CDK13. The expressions of circ-CDK13 and EIF4A3 in GC clinical samples were increased and positively correlated. Simultaneously overexpression of METase and EIF4A3 in resistant cells inhibited apoptosis, and further interference with circ-CDK13 reversed this effect.</div></div><div><h3>Conclusion</h3><div>MR inhibits circ-CDK13 level by down-regulating EIF4A3, thereby increasing the sensitivity of GC drug-resistant cells to DDP.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"443 1","pages":"Article 114315"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LncRNA AGAP2-AS1 stabilizes ATG9A to promote autophagy in endothelial cells - Implications for burn wound healing LncRNA AGAP2-AS1 稳定 ATG9A 以促进内皮细胞的自噬--对烧伤伤口愈合的影响。
IF 3.3 3区 生物学
Experimental cell research Pub Date : 2024-11-01 DOI: 10.1016/j.yexcr.2024.114310
Le Guo, Pihong Zhang, Minghua Zhang, Pengfei Liang, Situo Zhou
{"title":"LncRNA AGAP2-AS1 stabilizes ATG9A to promote autophagy in endothelial cells - Implications for burn wound healing","authors":"Le Guo,&nbsp;Pihong Zhang,&nbsp;Minghua Zhang,&nbsp;Pengfei Liang,&nbsp;Situo Zhou","doi":"10.1016/j.yexcr.2024.114310","DOIUrl":"10.1016/j.yexcr.2024.114310","url":null,"abstract":"<div><div>Deep second- or mixed-degree burn lesions are difficult to heal due to the impaired dermis supporting of epidermis renewal and nutrition delivery. Early dermis debridement and preservation speed healing and enhance results, emphasizing the need of knowing processes that promote burn-denatured dermis recovery, notably endothelial cell angiogenesis and autophagy. Integrative bioinformatics investigations identified AGAP2-AS1 as a highly elevated lncRNA in burn tissues. Pearson's correlation study connected AGAP2-AS1 to 112 differently co-expressed protein-coding genes involved in burn healing processes such cell cycle and TGF-beta receptor signaling. Experimental validation showed that heat damage elevated AGAP2-AS1 in HUVECs and HDMECs. Functionally, AGAP2-AS1 overexpression in heat-denatured HUVECs and HDMECs increased cell survival, migration, invasion, and angiogenesis. In addition, AGAP2-AS1 overexpression increased endothelial cell autophagy. Additional investigation showed AGAP2-AS1's association with ATG9A, stabilizing it. Post-heat damage, ATG9A knockdown drastically reduced HUVEC and HDMEC survival, migration, invasion, angiogenesis, and autophagy. More notably, ATG9A knockdown drastically reduced the benefits of AGAP2-AS1 overexpression on endothelial cell functions and autophagy. The positive association between AGAP2-AS1 and ATG9A expression in burn tissue samples highlights their crucial roles in endothelial cell response to heat injury, indicating that targeting this axis may aid burn wound healing. The research found that lncRNA AGAP2-AS1 stabilizes ATG9A and promotes autophagy in endothelial cells. These results imply that targeting the AGAP2-AS1/ATG9A axis may improve angiogenesis and tissue regeneration in burn injuries, revealing burn wound healing molecular pathways.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"443 1","pages":"Article 114310"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leptin on the apical surface inhibits casein production and STAT5 phosphorylation in mammary epithelial cells 顶端表面的瘦素可抑制乳腺上皮细胞中酪蛋白的产生和 STAT5 的磷酸化。
IF 3.3 3区 生物学
Experimental cell research Pub Date : 2024-11-01 DOI: 10.1016/j.yexcr.2024.114330
Lu Shan-Ni, Han Liang, Yuki Yasui, Kazuki Ninomiya, Tamaki Uehara, Takanori Nishimura, Ken Kobayashi
{"title":"Leptin on the apical surface inhibits casein production and STAT5 phosphorylation in mammary epithelial cells","authors":"Lu Shan-Ni,&nbsp;Han Liang,&nbsp;Yuki Yasui,&nbsp;Kazuki Ninomiya,&nbsp;Tamaki Uehara,&nbsp;Takanori Nishimura,&nbsp;Ken Kobayashi","doi":"10.1016/j.yexcr.2024.114330","DOIUrl":"10.1016/j.yexcr.2024.114330","url":null,"abstract":"<div><div>Leptin is a peptide hormone present in both the blood and milk. A close relationship between leptin and milk production in lactating mammary glands has been previously reported. However, how leptin influences milk production in lactating mammary glands remains unclear. Also, whether leptin in milk or blood influences mammary epithelial cells (MECs) during lactation needs further investigation. This study investigated the effects of leptin on mouse MECs using a culture model in which MECs produced milk components and formed less permeable tight junctions. Our results showed that β-casein production in MEC was inhibited by leptin in a concentration-dependent manner. Leptin also inactivated the signal transducer and activator of transcription 5 (STAT5), a transcription factor that facilitates milk production in MECs. Leptin treatment induced the activation of p38 and c-Jun N-terminal kinase (JNK) in MEC before STAT5 inactivation, and anisomycin, an activator of p38 and JNK, induced the inactivation of STAT5. Furthermore, leptin exposure on the apical surface of MECs inhibited β-casein production and inactivated STAT5. However, leptin exposure on the basolateral surface hardly caused these effects. These findings suggested that milk leptin, but not plasma leptin, inhibited milk production in MECs.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"443 1","pages":"Article 114330"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信