Wenlong He , Weibin He , Lin Zeng , Ruowen Zhao , Kailun Qiu , Pengcheng He , Zhongchan Sun , Ning Tan
{"title":"脂滴-线粒体接触的丧失可以保护细胞免受乙醇引起的心脏毒性。","authors":"Wenlong He , Weibin He , Lin Zeng , Ruowen Zhao , Kailun Qiu , Pengcheng He , Zhongchan Sun , Ning Tan","doi":"10.1016/j.yexcr.2025.114517","DOIUrl":null,"url":null,"abstract":"<div><div>EtOH (Ethanol)-induced cardiotoxicity (EIC) is intimately associated with perturbed lipid metabolism. Lipid droplet-Mitochondria contacts (LD-Mito contacts) are important nodes in lipid metabolism. However, the roles of LD-Mito contacts in EIC have yet to be clarified. In the present study, EtOH exposure induced a significant build-up of LD in cardiomyocytes accompanied by the disturbances in lipogenesis and lipolysis. Upon EtOH treatment, we also observed a substantial decrease in LD-Mito contacts, downregulation of the tethering protein PLIN5 (Perilipin 5), and reduced fatty acid (FA) flux from LD to mitochondria. Overexpression of full-length PLIN5, but not its truncated form (PLIN5Δ), reversed the reduction in LD-Mito contacts and restored FA flux. A synthetic LD-Mito-Linker was generated to exclude the influence of PLIN5's versatile functions and investigate the specific role of LD-Mito contacts in EIC. Tethering LD to mitochondria by the synthetic linker restored the LD-Mito contacts and FA flux in EtOH-treated cardiomyocytes. Inflammation and cardiomyocyte death were measured to indicate lipotoxicity in EIC. Our results demonstrated that overexpression of PLIN5Δ ameliorated EtOH-induced cardiomyocytes death and inflammation whereas restoration of LD-Mito contacts by the synthetic linker aggravated apoptosis, inflammatory response, oxidative stress and Mitochondrial membrane potential depolarization. These findings indicated that loss of LD-Mito contacts and the blocked FA flux may act as a cellular adaptive response to EtOH exposure, thus targeting LD-Mito contacts may serve as a potential therapeutic strategy to combat EIC.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"447 2","pages":"Article 114517"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loss of lipid droplet-mitochondria contacts confers protection against ethanol-induced cardiotoxicity\",\"authors\":\"Wenlong He , Weibin He , Lin Zeng , Ruowen Zhao , Kailun Qiu , Pengcheng He , Zhongchan Sun , Ning Tan\",\"doi\":\"10.1016/j.yexcr.2025.114517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>EtOH (Ethanol)-induced cardiotoxicity (EIC) is intimately associated with perturbed lipid metabolism. Lipid droplet-Mitochondria contacts (LD-Mito contacts) are important nodes in lipid metabolism. However, the roles of LD-Mito contacts in EIC have yet to be clarified. In the present study, EtOH exposure induced a significant build-up of LD in cardiomyocytes accompanied by the disturbances in lipogenesis and lipolysis. Upon EtOH treatment, we also observed a substantial decrease in LD-Mito contacts, downregulation of the tethering protein PLIN5 (Perilipin 5), and reduced fatty acid (FA) flux from LD to mitochondria. Overexpression of full-length PLIN5, but not its truncated form (PLIN5Δ), reversed the reduction in LD-Mito contacts and restored FA flux. A synthetic LD-Mito-Linker was generated to exclude the influence of PLIN5's versatile functions and investigate the specific role of LD-Mito contacts in EIC. Tethering LD to mitochondria by the synthetic linker restored the LD-Mito contacts and FA flux in EtOH-treated cardiomyocytes. Inflammation and cardiomyocyte death were measured to indicate lipotoxicity in EIC. Our results demonstrated that overexpression of PLIN5Δ ameliorated EtOH-induced cardiomyocytes death and inflammation whereas restoration of LD-Mito contacts by the synthetic linker aggravated apoptosis, inflammatory response, oxidative stress and Mitochondrial membrane potential depolarization. These findings indicated that loss of LD-Mito contacts and the blocked FA flux may act as a cellular adaptive response to EtOH exposure, thus targeting LD-Mito contacts may serve as a potential therapeutic strategy to combat EIC.</div></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"447 2\",\"pages\":\"Article 114517\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482725001132\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482725001132","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Loss of lipid droplet-mitochondria contacts confers protection against ethanol-induced cardiotoxicity
EtOH (Ethanol)-induced cardiotoxicity (EIC) is intimately associated with perturbed lipid metabolism. Lipid droplet-Mitochondria contacts (LD-Mito contacts) are important nodes in lipid metabolism. However, the roles of LD-Mito contacts in EIC have yet to be clarified. In the present study, EtOH exposure induced a significant build-up of LD in cardiomyocytes accompanied by the disturbances in lipogenesis and lipolysis. Upon EtOH treatment, we also observed a substantial decrease in LD-Mito contacts, downregulation of the tethering protein PLIN5 (Perilipin 5), and reduced fatty acid (FA) flux from LD to mitochondria. Overexpression of full-length PLIN5, but not its truncated form (PLIN5Δ), reversed the reduction in LD-Mito contacts and restored FA flux. A synthetic LD-Mito-Linker was generated to exclude the influence of PLIN5's versatile functions and investigate the specific role of LD-Mito contacts in EIC. Tethering LD to mitochondria by the synthetic linker restored the LD-Mito contacts and FA flux in EtOH-treated cardiomyocytes. Inflammation and cardiomyocyte death were measured to indicate lipotoxicity in EIC. Our results demonstrated that overexpression of PLIN5Δ ameliorated EtOH-induced cardiomyocytes death and inflammation whereas restoration of LD-Mito contacts by the synthetic linker aggravated apoptosis, inflammatory response, oxidative stress and Mitochondrial membrane potential depolarization. These findings indicated that loss of LD-Mito contacts and the blocked FA flux may act as a cellular adaptive response to EtOH exposure, thus targeting LD-Mito contacts may serve as a potential therapeutic strategy to combat EIC.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.