{"title":"[Real-time measurement of neuromodulators using GRAB sensors].","authors":"Rentaro Higuchi, Yasutaka Mukai, Hiroaki Norimoto","doi":"10.1254/fpj.24111","DOIUrl":"https://doi.org/10.1254/fpj.24111","url":null,"abstract":"<p><p>To advance our understanding of the neuronal mechanisms underpinning animal behavior, it is important to integrate traditional electrophysiological methodologies with cutting-edge technologies capable of providing detailed insights into the dynamics of neuromodulators. However, achievement of high spatial and temporal resolution in neuromodulator measurements has presented significant challenges, particularly in the context of real-time observations within freely behaving animals. Recent innovations, exemplified by the development of genetically encoded fluorescent indicator, commonly referred to as \"GRAB sensors,\" have addressed these limitations. These tools enable the real-time, high-precision quantification of neuromodulators, representing a transformative advancement in the field. Notably, GRAB sensors have been designed to target a broad spectrum of neuromodulators, including dopamine (DA), acetylcholine (ACh), noradrenaline/norepinephrine (NE), and neuropeptides, offering unparalleled specificity, sensitivity, and temporal resolution. This review provides an overview of the features and advantages of GRAB sensors, highlights their diverse applications, and discusses key considerations pertinent to their implementation in contemporary neuroscience research.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 3","pages":"195-200"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144063156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Regulation of myeloid-derived suppressor cells by glutamate].","authors":"Masashi Tachibana","doi":"10.1254/fpj.25009","DOIUrl":"https://doi.org/10.1254/fpj.25009","url":null,"abstract":"<p><p>Myeloid-derived suppressor cells (MDSCs) suppress anti-tumor immunity in tumor bearers, which leads to tumor progression. Immune checkpoint blockers (ICBs) demonstrated significant efficiency against various cancers; however, their success rate is limited to approximately 20-30% in patients with cancer. To address this limitation, predictive biomarkers and combination therapies are required. Since MDSCs are supposed to be crucial for the resistance to ICBs, targeting MDSCs could be a promising approach for cancer immunotherapy. Granulocyte colony-stimulating factor (G-CSF), widely used as prophylaxis and therapy for febrile neutropenia (FN), has been shown to significantly reduce its incidence. However, G-CSF has been reported to promote tumor progression caused by the enhancing the proliferation of MDSCs. We found that G-CSF enhances the immunosuppressive activity of MDSCs through the upregulation of γ-glutamyltransferase 1 (GGT1). GGT1, an enzyme hydrolyzing extracellular glutathione, is reported to be a marker for early-stage cancers and promote tumor progression. It is suggested that GGT1 increases glutamate levels through glutathione hydrolysis and that metabotropic glutamate receptor signaling enhances the immunosuppressive activity of MDSCs. Moreover, in FN mouse models, we observed that G-CSF promoted tumor progression, while the inhibition of GGT abolished. Together, the inhibition of GGT can mitigate the tumor-promoting effects of MDSCs without compromising the beneficial effect of G-CSF. These insights should lead to the safer and more effective cancer immunotherapy.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 3","pages":"158-162"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143993062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[The potential of neural microphysiological systems (MPS)].","authors":"Ikuro Suzuki","doi":"10.1254/fpj.24098","DOIUrl":"10.1254/fpj.24098","url":null,"abstract":"<p><p>In vitro compound evaluation using human-derived neural cells is beginning to incorporate microphysiological systems (MPS). Neural MPS includes not only microfluidic devices but has also recently recognized neural organoids as viable MPS platforms. The history of neural MPS utilizing microfluidic devices is extensive, with the development of models that control the positioning of cell bodies and neurite outgrowth, as well as models that mimic neuronal projections through the connection of heterogeneous cell types. This paper presents examples of predicting peripheral neuropathy through machine learning applied to images of cell bodies and neurites in microfluidic devices, as well as the construction of a motor neuron-skeletal muscle model. Additionally, it discusses the responses to contraindicated drugs in Dravet syndrome using brain organoids that reflect biological brain structures. In drug discovery applications of neural MPS, it is essential to develop and utilize appropriate MPS tailored to specific objectives, ensuring biological relevance and reliability for future advancements.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 2","pages":"92-96"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Past history of obesity and immune memory in age-related macular degeneration].","authors":"Masayuki Hata","doi":"10.1254/fpj.24069","DOIUrl":"https://doi.org/10.1254/fpj.24069","url":null,"abstract":"<p><p>Age-related macular degeneration (AMD) is one of the most common neuroinflammatory diseases that is the leading cause of blindness worldwide. AMD is caused by not only mutations in immune-related genes such as Cfh (complement factor H) but also the accumulation of environmental factors such as obesity and other inflammatory triggers with age. Our study found that the past histories of obesity can lead to immunological reprogramming in the innate immune system and affect the development of AMD in later life. This reveals a new link in the role of innate immune memory in neuroinflammatory diseases such as AMD, and intervention in innate immune memory may be a new therapeutic strategy.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 1","pages":"23-25"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Safety and efficacy assessments using human iPS cell-derived cardiomyocytes].","authors":"Hiroyuki Kawagishi, Yasunari Kanda","doi":"10.1254/fpj.24043","DOIUrl":"https://doi.org/10.1254/fpj.24043","url":null,"abstract":"<p><p>The delay and loss of drugs are serious problems in Japan. To overcome this issue, it is important to strengthen drug development capabilities. For drug development, the establishment and advancement of non-clinical testing methods are necessary for safe and effective clinical trials. Recently, the movement toward alternatives to animal testing has accelerated internationally. New Approach Methodologies (NAMs), such as human inducible pluripotent stem cell (hiPSC) technology and in silico modeling & simulation, are considered valuable for drug development. It has been demonstrated that hiPSC-derived cardiomyocytes (hiPSC-CMs) are useful tools to assess drug-induced cardiotoxicity, including arrhythmia and cardiac contractile dysfunction, leading to the use of hiPSC-CMs in the drug review process. Advancing hiPSC technologies have enabled the generation of mature hiPSC-CMs and engineered heart tissues, which are expected to provide novel information in drug safety and efficacy evaluation. Furthermore, it would be possible to establish the non-clinical evaluation that takes into account individual differences by developing hiPSCs bearing characteristics specific to certain populations, such as pediatrics or rare disease patients. Here, we present the recent findings and future perspectives on non-clinical evaluation using hiPSC technology.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 1","pages":"4-8"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuya Nishimura, Toshiyuki Tsuchiya, Koji Kijima, Takashi Matsuhira
{"title":"[Pharmacological and clinical profiles of belumosudil mesylate (REZUROCK<sub>®</sub> Tablets), a selective inhibitor of ROCK2].","authors":"Yuya Nishimura, Toshiyuki Tsuchiya, Koji Kijima, Takashi Matsuhira","doi":"10.1254/fpj.24091","DOIUrl":"10.1254/fpj.24091","url":null,"abstract":"<p><p>Belumosudil mesylate (REZUROCK<sub>®</sub> Tablets hereafter belumosudil) is a novel selective rho-associated, coiled-coil containing protein kinase 2 (ROCK2) inhibitor. ROCK2 is a kinase involved in immune cell differentiation and tissue fibrosis. Belumosudil exerts its effect by decreasing the inflammation and fibrosis in various organs which are the two key features of cGVHD. In the phase III clinical study in Japan, the primary endpoint was met, best overall response rate (best ORR), defined as the percentage of patients who achieved complete response (CR) or partial response (PR), was 85.7%. Belumosudil received manufacturing and marketing approval for the treatment of chronic graft-versus-host disease (cGVHD) in patients who have insufficient response to steroid therapy in March 2024 and launched in May 2024. The Japanese MHLW has also granted orphan drug designation in May 2023 for the treatment of cGVHD.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 2","pages":"141-151"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143536999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Efforts to develop therapeutic agents for bacterial infections to fight against AMR (antimicrobial resistance)].","authors":"Miki Takemura","doi":"10.1254/fpj.24082","DOIUrl":"https://doi.org/10.1254/fpj.24082","url":null,"abstract":"<p><p>The global spread of antimicrobial resistance (AMR) is a threat to the international community, but few new antimicrobials are in the development stage and there are few options to treat AMR infections. In light of this situation, AMR has been continuously featured on the G7 agenda since 2015, and the 2023 G7 Hiroshima Leaders' Communiqué also states that in recognition of the global and rapid spread of AMR, push and pull incentives will be explored and implemented. In addition, the World Health Assembly adopted the Global Action Plan on AMR in 2015, and Japan developed its first AMR action plan in 2016. An updated version has been released in 2023. It is hoped that the attractiveness of the antibiotic market will be improved, and the new antibiotic development will be revitalized by further expansion and enhancement of the pull incentive systems. Cefiderocol, a novel siderophore cephalosporin, demonstrates potent antibacterial activity against carbapenem-resistant Gram-negative bacteria, which are considered to be particularly high-priority pathogens by the World Health Organization (WHO) and other organizations. A partnership between the SHIONOGI, the Global Antibiotic Research and Development Partnership (GARDP) and the Clinton Health Access Initiative (CHAI) formed to improve access to cefiderocol in countries around the world, including low- and middle-income countries. In order to bring these efforts to fruition in the fight against AMR, it is important to have further understanding and cooperation from people around the world, regardless of country or field.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 3","pages":"184-190"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144001226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}