{"title":"[The role of vendors in the democratization of AI-challenges and collaboration in the application of image analysis technology to drug discovery processes].","authors":"Yuki Kato, Hiroki Kawai","doi":"10.1254/fpj.24109","DOIUrl":"https://doi.org/10.1254/fpj.24109","url":null,"abstract":"<p><p>We are living in an era in which AI technology has become widely available and accessible to many people. The field of drug discovery is no exception, and many pharmaceutical companies have actually begun to utilize AI technology in drug discovery research. In the field of image analysis, which is our main business, AI technology is also advancing and being applied to drug discovery research. In this era of \"democratization of AI\", what is the role of AI vendors including our company? What is needed for drug discovery researchers to use the technology correctly and appropriately in their research, and for more researchers to benefit from the technology than ever before? We would like to share with you what we have been doing so far and what we will do in the future for \"true democratization of AI\", including examples of applications of image analysis AI technology to drug discovery research.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 3","pages":"201-206"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143958491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Involvement of chemokines and these receptors in glioblastoma].","authors":"Yuta Hara, Kazuhiko Matsuo, Takashi Nakayama","doi":"10.1254/fpj.25005","DOIUrl":"https://doi.org/10.1254/fpj.25005","url":null,"abstract":"<p><p>Chemokines are a group of cytokines which are involved in the migration of immune cells as well as other cell types such as endothelial cells. These molecules normally regulate the homeostasis in our body's immune system. Furthermore, it has been reported that chemokines mediate the onset and progression of various diseases including allergic diseases, autoimmune diseases, and cancers through the recruitment of immune cells to inflammatory sites. Glioblastoma is one of the primary brain tumors with a significantly poor prognosis. Similarly to other tumors, it has been observed that various immune cells infiltrate into the brain tumor tissues. However, the details of the mechanisms remain unclear. At present, cancer immunotherapy is vigorously researched, and is proved to be effective for many cancers. Unfortunately, the effectiveness of cancer immunotherapy has not yet been shown in glioblastoma. Chemokine is thought to be one of the important factors for cancer immunotherapy. Therefore, understanding the role of chemokines in glioblastoma is considered to be beneficial for the development of cancer immunotherapy. In this review, we overview the role of chemokines and these receptors in glioblastoma.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 3","pages":"172-176"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144001228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Mechanisms of allergen-specific immunotherapy].","authors":"Hideaki Morita","doi":"10.1254/fpj.24084","DOIUrl":"https://doi.org/10.1254/fpj.24084","url":null,"abstract":"<p><p>Allergen-specific immunotherapy (AIT) has been a longstanding treatment for allergic diseases. Historically, subcutaneous immunotherapy was the main approach, but with the development of sublingual preparations, which are associated with fewer systemic side effects, sublingual immunotherapy is gaining global popularity. In Japan, the approval of standardized sublingual immunotherapy preparations in 2014 has significantly accelerated its adoption. The mechanism of allergic inflammation is divided into sensitization and elicitation phases. The sensitization phase involves the production of antigen-specific IgE antibodies against a particular antigen. These IgE antibodies bind to FcεRI on mast cells and basophils, preparing the body for an allergic response. The elicitation phase occurs when the body, already primed with these antibodies, is re-exposed to the same antigen, triggering inflammation and symptoms. This phase includes mechanisms where IgE-mediated mast cell activation leads to degranulation and where local Th2 cell activation induces inflammation. While the mechanisms of AIT are not fully understood, they are categorized into desensitization and immune tolerance. Desensitization is induced by reducing the responsiveness of mast cells and basophils to the antigen. Immune tolerance involves the production of antigen-specific IgG4 antibodies that compete with IgE for antigen binding, and the induction of regulatory T cells and other anti-inflammatory immune cells producing cytokines such as IL-10. AIT still faces challenges, such as the lack of predictive biomarkers for efficacy. Recent studies indicate that HLA genotypes influence AIT responsiveness. Advances in genetic and single-cell analysis are expected to address these challenges, paving the way for improved treatment outcomes.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 1","pages":"43-47"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Gene therapy for visual function recovery].","authors":"Kazuhiko Namekata, Xiaoli Guo, Chikako Harada, Takayuki Harada","doi":"10.1254/fpj.24053","DOIUrl":"https://doi.org/10.1254/fpj.24053","url":null,"abstract":"<p><p>Glaucoma is an age-related neurodegenerative disease and the leading cause of blindness, but currently no fundamental treatment has been present. The main treatment is to reduce intraocular pressure, which is expected to delay the progression of the disease. However, there are many glaucoma patients for whom progression cannot be controlled by lowering intraocular pressure alone, and the development of a fundamental treatment is required. Meanwhile, the clinical application of gene therapy is increasing worldwide. Various gene therapy vectors are still being developed, and technological change is much faster in this field. Gene therapy has already been clinically applied to several neurodegenerative diseases, but gene therapy for glaucoma has not yet been established. Our group is investigating the development of a new treatment for glaucoma by gene therapy using neurotrophic factor signaling. And we aim not only to suppress disease progression by neuroprotection, but also to recover the visual function by axonal regeneration.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 1","pages":"19-22"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Mechanism of transduction of itch and strategy of treatment for itch].","authors":"Kenji Izuhara, Satoshi Nunomura, Yasuhiro Nanri, Yuko Honda","doi":"10.1254/fpj.24080","DOIUrl":"10.1254/fpj.24080","url":null,"abstract":"<p><p>Itch is an unpleasant sense to evoke desire to scratch skin. Itch not only disturbs daily lives, but also exacerbates inflammation in case of atopic dermatitis (AD). It had been thought that both itch and pain are transduced by the same neurons; however, it is now known that neutrons transducing either itch or pain are distinct. Moreover, TRP channels, a family of calcium channels, play an important role for transducing itch as well as pain, temperature, and pressure. Development of neuroscience and molecular biology has dramatically advanced our understanding of how itch is transduced in recent years. On the other hand, development of immunology has revealed that there exist several immune types in our host defense mechanism and that type 2 immune reaction is dominant in the pathogenesis of allergic diseases including AD. Although it had been already known that type 2 cytokines contribute to the pathogenesis of AD by binding to their receptors on both immune cells and tissue resident cells, it has been recently found that several type 2 cytokines directly transduce the itch signals by binding to peripheral nerves. Due to this discovery, we can understand more deeply the itch mechanism of AD and can develop molecularly targeted drugs for AD targeting type 2 cytokines, which has dramatically changed the treatment of AD. In this review article, we describe the progress of our recent understanding of the itch mechanism and the strategy of treatment against it.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 2","pages":"79-85"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143536995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Promotion of the appropriate use of antimicrobial agents by utilizing medical big data].","authors":"Masayuki Chuma, Mitsuhiro Goda, Hirofumi Hamano, Takahiro Niimura, Kenshi Takechi, Kenta Yagi, Yuki Izawa-Ishizawa, Yoshito Zamami, Keisuke Ishizawa, Yoshikazu Tasaki","doi":"10.1254/fpj.24081","DOIUrl":"https://doi.org/10.1254/fpj.24081","url":null,"abstract":"<p><p>The global surge in antimicrobial resistance (AMR) highlights the critical need for the development of innovative therapies and the appropriate use of antimicrobial agents. Our research focused on preventing, managing, and mitigating the adverse effects of treatments for infection with methicillin-resistant Staphylococcus aureus. In this review, we present our investigations utilizing medical big data. The first study aimed to elucidate the relationship between renal outcome and survival following the onset of vancomycin-associated nephrotoxicity (VAN). An initial analysis using the US Food and Drug Administration Adverse Events Reporting System (FAERS) database revealed elevated mortality rates among patients with VAN compared with those without VAN, forming the basis for further investigation. A subsequent, more rigorous, retrospective analysis using electronic medical records confirmed that poor survival outcomes were significantly associated with non-recovery from VAN, particularly when progression to acute kidney injury of stage ≥2 occurred. Therefore, preventing progression to severe VAN is critical for enhancing survival outcomes. The second study investigated the relationship between statin use and daptomycin-related musculoskeletal adverse events. By employing a mixed-method approach combining meta-analysis with disproportionality analysis of the FAERS data, a significant association between statin therapy and daptomycin-related rhabdomyolysis was identified. This highlights the importance of cautious statin and daptomycin use, with careful consideration of potential safety risks. Each medical big-data database possesses unique characteristics that require careful consideration during analysis. The accurate interpretation of medical big data, coupled with its integration with complementary methodologies, will produce more robust and reliable research outcomes across diverse fields.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 3","pages":"178-183"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143959933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}