{"title":"Neuroprotective effect of gallic acid in mice with rotenone-induced neurodegeneration.","authors":"Wachiryah Thong-Asa, Chatrung Wassana, Kunyarat Sukkasem, Pichcha Innoi, Montira Dechakul, Pattraporn Timda","doi":"10.1538/expanim.23-0165","DOIUrl":"10.1538/expanim.23-0165","url":null,"abstract":"<p><p>We investigated the effect of gallic acid (Gal) against neurodegenerative pathophysiology relevant to Parkinsion's disease (PD) in mice with rotenone-induced toxicity. Forty male institute of cancer research (ICR) mice were randomly divided into four groups: sham-veh, PD-veh (received subcutaneous injection with 2.5 mg/kg/48 h of rotenone); PD-Gal50; and PD-Gal100 (the latter two groups received subcutaneous injection with 2.5 mg/kg/48 h of rotenone and oral gavage with gallic acid 50 and 100 mg/kg/48 h, respectively). All treatments continued for 5 weeks with motor ability assessments once per week using hanging and rotarod tests. Brain tissue evaluation of oxidative status, together with striatal and substantia nigra par compacta (SNc) histological and immunohistological assessments were performed. The results indicate that rotenone significantly induced muscle weakness and motor coordination deficit from the first week of rotenone injection, and a significant increase in neuronal degeneration was presented in both the striatum and SNc. Decreased tyrosine hydroxylase and increment of glia fibrillary acidic protein expression in SNc were depicted. The deteriorating effects of rotenone were ameliorated by gallic acid treatment, especially 100 mg/kg dose. Rotenone did not induce a significant change of lipid peroxidation indicated, but gallic acid exhibited a significant inhibitory effect on the lipid peroxidation increment. Rotenone showed a significant reduction of superoxide dismutase activity, and neither 50 nor 100 mg/kg of gallic acid could alleviate this enzyme activity. In conclusion, gallic acid ameliorated motor deficits and preserving SNc neurons which led to maintaining of the dopaminergic source, including a nurturing effect on supporting astrocytes in mice with rotenone-induced neurodegeneration.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":"259-269"},"PeriodicalIF":2.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139722196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Myelin lesion in the aspartoacylase (Aspa) knockout rat, an animal model for Canavan disease.","authors":"Shuji Takeda, Rika Hoshiai, Miyuu Tanaka, Takeshi Izawa, Jyoji Yamate, Takashi Kuramoto, Mitsuru Kuwamura","doi":"10.1538/expanim.23-0089","DOIUrl":"10.1538/expanim.23-0089","url":null,"abstract":"<p><p>Canavan disease (CD) is a fatal hereditary neurological disorder caused by a mutation in the aspartoacylase (ASPA) gene and characterized by neurological signs and vacuolation in the central nervous system (CNS). The mutation inhibits the hydrolysis of N-acetyl-aspartate (NAA) resulting in accumulation of NAA in the CNS. A new Aspa-knockout rat was generated by transcription activator-like effector nuclease (TALEN) technology. Herein we describe the pathological and morphometrical findings in the brain and spinal cords of Aspa-knockout rats. Although Aspa-knockout rats did not show any neurological signs, vacuolation with swollen axons, hypomyelination, and activated swollen astrocytes were observed mainly in the brainstem reticular formation, ascending and descending motor neuron pathway, and in the olfactory tract. Morphometrical analysis revealed no obvious change in the number of neurons. These changes in the CNS are similar to human CD, suggesting that this animal model would be useful for further study of treatment and understanding the pathophysiology of human CD.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":"347-356"},"PeriodicalIF":2.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254489/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Establishment and visual analysis of CBA/J-Pde6b<sup>Y347Y/Y347X</sup> and C3H/HeJ-Pde6b<sup>Y347Y/Y347X</sup> mice.","authors":"Miyuki Shindo, Miho Terao, Shuji Takada, Minoru Ichinose, Emiko Matsuzaka, Tadashi Yokoi, Noriyuki Azuma, Seiya Mizuno, Hideki Tsumura","doi":"10.1538/expanim.23-0142","DOIUrl":"10.1538/expanim.23-0142","url":null,"abstract":"<p><p>In CBA/J and C3H/HeJ mice, retinitis pigmentosa is inherited as an autosomal-recessive trait due to a mutation in Pde6b, which encodes cGMP phosphodiesterase subunit b. In these strains, the Y347X mutation in Pde6b leads to the upregulation of cGMP levels, increased Ca<sup>2+</sup> influx induces rod death, and the outer segment and rod cells entirely disappeared by 35 days after birth. In the present study, we utilized the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9-mediated gene editing to repair the Y347X mutation in CBA/J and C3H/HeJ mice. Evaluation of the established CBA/J-Pde6b<sup>Y347Y/Y347X</sup> and C3H/HeJ-Pde6b<sup>Y347Y/Y347X</sup> mice, which were confirmed to have normal retinal layers by live fundoscopic imaging and histopathological analysis, revealed improved visual acuity based on the visual cliff and light/dark latency tests. Furthermore, our analyses revealed that the visible platform test was a more effective tool for testing visual behavior in these mice. The results suggest that the established strains can serve as control groups for CBA/J and C3H/HeJ in ophthalmology studies involving retinitis pigmentosa.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":"203-210"},"PeriodicalIF":2.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091356/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139086514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Experimental AnimalsPub Date : 2024-05-03Epub Date: 2023-12-15DOI: 10.1538/expanim.23-0145
Na Ahn, Jaehak Park, Jungjoon Ihm, Sangho Roh
{"title":"A survey of the impact of COVID-19 on the management of animal experiments and laboratory animal facilities in Korea.","authors":"Na Ahn, Jaehak Park, Jungjoon Ihm, Sangho Roh","doi":"10.1538/expanim.23-0145","DOIUrl":"10.1538/expanim.23-0145","url":null,"abstract":"<p><p>The pandemic has affected the lives of people all over the world. The effects of the pandemic on laboratory animal facilities and their operations through this unusual global event are poorly understood. Here, we have applied a methodological framework of qualitative approach including semi-structured interviews to investigate laboratory animal operations in Korea and how it has shaped the on-going management and laboratory operations of such facilities. A total of fifty-two individuals, including members and administrators of the Institutional Animal Care and Use Committee (IACUC), researchers, and animal facility managers and staff, were surveyed through purposeful sampling. Survey questions explored how the pandemic impacted the IACUC and the functioning of animal facilities, and what steps to take in preparation of a future pandemic-like crisis. Our survey found evidence of an increase in animal experiments in Korea during the pandemic that correlated with increases in research funding during that period, such as for vaccine development. Also, operational challenges due to pandemic-related health issues in personnel were resolved through overtime, rather than by reducing facility operations. Moreover, a refinement of post-approval monitoring (PAM) practices was also discussed by respondents. Taken together, our study offers insights into animal facility operations during the pandemic and outlines recommendations for safeguarding operations in such future scenarios.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":"193-202"},"PeriodicalIF":2.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138801032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Treatment of spontaneously hypertensive rats during pregnancy and lactation with the antioxidant tempol lowers blood pressure and reduces oxidative stress.","authors":"Kohei Kawakami, Hiroyuki Matsuo, Naoyo Kajitani, Ken-Ichi Matsumoto","doi":"10.1538/expanim.23-0069","DOIUrl":"10.1538/expanim.23-0069","url":null,"abstract":"<p><p>Genetic and environmental factors interact in a complex manner in the pathogenesis of essential hypertension in humans. Oxidative stress is considered one of the more important environmental factors. We used the spontaneously hypertensive rat (SHR) model to test whether continuous feeding with the antioxidant tempol reduces maternal oxidative stress during pregnancy and potentially contributes to the prevention of cardiovascular disease onset. Pregnant female rats were divided into control and tempol-treated groups. Tempol was continuously administered in drinking water. The administration period lasted approximately 40 days, from the confirmation of a vaginal plug until birth of the pups and their subsequent weaning. The blood pressure (BP) of each adult female was measured three times during pregnancy and post parturition. Milk was collected three times from nursing mother rats in the immediate postpartum period. Markers of oxidative stress were measured: 8-hydroxyl-2'-deoxyguanosine (8-OHdG) levels in milk during the experimental period and 8-OHdG and corticosterone levels in urine of adult and neonatal rats. The urinary level of 8-OHdG in the tempol-treated group was significantly lower than that in the control group. Corticosterone levels were significantly lower in urine of neonatal rats from the tempol-treated group compared with the levels of the control group. The levels of total antioxidant in milk were significantly greater in the tempol-treated group than in the control group. This study demonstrated that continuous administration of tempol to pregnant SHRs reduced maternal oxidative stress and contributed to reduced oxidative stress in neonatal rats.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":"136-144"},"PeriodicalIF":2.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41195890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ivabradine ameliorates cardiomyopathy progression in a Duchenne muscular dystrophy model rat.","authors":"Ryota Tochinai, Koichi Kimura, Takeru Saika, Wataru Fujii, Hiroyuki Morita, Koki Nakanishi, Yoshiharu Tsuru, Shin-Ichi Sekizawa, Keitaro Yamanouchi, Masayoshi Kuwahara","doi":"10.1538/expanim.23-0087","DOIUrl":"10.1538/expanim.23-0087","url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy caused by dystrophin mutations. Inevitable progressive cardiomyopathy is a current leading cause of premature death although respiratory management has improved the prognosis of patients with DMD. Recent evidence shows that reducing the heart rate is expected as one of the promising strategies for heart failure treatment, but administering a sufficient dose of β-blocker for patients with DMD with tachycardia is difficult because of their low blood pressure (BP). Thus, this study aimed to clarify the role of ivabradine, which suppresses cardiac sinus node pacemakers without decreasing BP, in ameliorating cardiomyopathy progression in a rat model with DMD. A trans-oral single ivabradine administration demonstrated a declined dose-dependent heart rate without any significant BP reduction. Trans-gastric repeated administrations of 5 mg/kg of ivabradine twice a day for 3 months showed ameliorated cardiomyopathy in DMD rats based on echocardiography and histopathological observations (left ventricular dysfunction, right ventricular dysfunction, and myocardial fibrosis) as compared with vehicle administration.Our finding indicates that ivabradine is expected as another treatment choice for patients with DMD having tachycardia.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":"145-153"},"PeriodicalIF":2.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71422006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Experimental AnimalsPub Date : 2024-05-03Epub Date: 2023-11-29DOI: 10.1538/expanim.23-0092
Haiqing Zhang, Zunlin Zhou, Jiyao Qin, Juan Yang, Hao Huang, Xiaoyan Yang, Zhong Luo, Yongsu Zheng, Yan Peng, Ya Chen, Zucai Xu
{"title":"Transmembrane protein modulates seizure in epilepsy: evidence from temporal lobe epilepsy patients and mouse models.","authors":"Haiqing Zhang, Zunlin Zhou, Jiyao Qin, Juan Yang, Hao Huang, Xiaoyan Yang, Zhong Luo, Yongsu Zheng, Yan Peng, Ya Chen, Zucai Xu","doi":"10.1538/expanim.23-0092","DOIUrl":"10.1538/expanim.23-0092","url":null,"abstract":"<p><p>Transmembrane protein (TMEM230) is located in secretory/recycling vesicles, including synaptic vesicles in neurons. However, the functional relationship between TMEM230 and epilepsy is still a mystery. The aims of this study were to investigate the expression of TMEM230 in patients with temporal lobe epilepsy (TLE) and two different mice models of chronic epilepsy, and to determine the probable roles of TMEM230 in epilepsy. Our results showed that TMEM230 expression was increased in the temporal neocortex of epileptic patients and the hippocampus and cortex of epileptic mice compared with that in the control tissues. Moreover, TMEM230 was mainly expressed in the neurons in both humans and mice epileptic brain. TMEM230 co-localized with glutamate vesicular transporter 1 (VGLUT-1), but not with vesicular γ-aminobutyric acid (GABA) transporter (VGAT). Mechanistically, coimmunoprecipitation confirmed that TMEM230 interacted with VGLUT-1, but not with VGAT in the hippocampus of epileptic mice. Lentivirus mediated overexpression of TMEM230 increased mice susceptibility to epilepsy and behavioural phenotypes of epileptic seizures during the kainite (KA)-induced chronic phase of epileptic seizures and the pentylenetetrazole (PTZ) kindling process, whereas lentivirus-mediated TMEM230 downregulation had the opposite effect. These results shed light on the functions of TMEM230 in neurons, suggesting that TMEM230 may play a critical role in the regulation of epileptic activity via influencing excitatory neurotransmission.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":"162-174"},"PeriodicalIF":2.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091352/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138458806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Experimental AnimalsPub Date : 2024-05-03Epub Date: 2024-01-11DOI: 10.1538/expanim.23-0113
Xinpeng Wang, Linguo Xie, Chunyu Liu
{"title":"CCR2 antagonist attenuates calcium oxalate-induced kidney oxidative stress and inflammation by regulating macrophage activation.","authors":"Xinpeng Wang, Linguo Xie, Chunyu Liu","doi":"10.1538/expanim.23-0113","DOIUrl":"10.1538/expanim.23-0113","url":null,"abstract":"<p><p>C-C chemokine receptor type 2 (CCR2) is a monocyte chemokine associated with oxidative stress and inflammation. Kidney stones (KS) are composed of calcium oxalate (CaOx), which trigger renal oxidative stress and inflammatory. This study aims to evaluate the effects of CCR2 on KS in vivo and in vitro. Eight-week-old male C57BL/6J mice were intraperitoneally injected with glyoxylate (GOX) daily to establish a KS model, and along with CCR2 antagonist (INCB3344) treatment on days 2, 4, and 6. The results showed that CCR2 antagonist reduced renal injury markers (blood urea nitrogen and serum creatinine), alleviated renal tubular injury and CaOx crystal deposition. CCR2 antagonist also decreased CCR2 expression induced by GOX treatment and increased Nrf2 expression. GOX treatment promoted malondialdehyde (MDA) production, decreased glutathione (GSH) content, and inhibited catalase (CAT) and superoxide dismutase (SOD) activity, however, CCR2 antagonist attenuated the above effects of GOX. CCR2 antagonist had inhibitory effects on GOX-induced inflammatory cytokine expression (IL1B, IL6 and MCP1), and inhibited apoptosis by increasing Bcl-2 expression and decreasing Bax and cleaved-caspase 3 expression. In vitro experiments were performed by co-culture model of CaOx-induced damaged HK-2 cells and macrophage-like THP-1 cells. CCR2 antagonist inhibited CaOx-induced THP-1 cell M1 polarization by decreasing the TNF-α, IL6 and iNOS levels, and further alleviated CaOx-induced oxidative stress damage, inflammatory response and apoptosis of HK-2 cells. The study suggests that CCR2 antagonist may be resistant to CaOx crystals-induced oxidative stress and inflammation by inhibiting macrophage M1 polarization.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":"211-222"},"PeriodicalIF":2.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Experimental AnimalsPub Date : 2024-05-03Epub Date: 2024-01-20DOI: 10.1538/expanim.23-0158
Masaki Watanabe, Yuko Nikaido, Nobuya Sasaki
{"title":"Validation of the anesthetic effect of a mixture of remimazolam, medetomidine, and butorphanol in three mouse strains.","authors":"Masaki Watanabe, Yuko Nikaido, Nobuya Sasaki","doi":"10.1538/expanim.23-0158","DOIUrl":"10.1538/expanim.23-0158","url":null,"abstract":"<p><p>Proper administration of anesthesia is indispensable for the ethical treatment of lab animals in biomedical research. Therefore, selecting an effective anesthesia protocol is pivotal for the design and success of experiments. Hence, continuous development and refinement of anesthetic agents are imperative to improve research outcomes and elevate animal welfare. \"Balanced anesthesia\" involves using multiple drugs to optimize efficacy while minimizing side effects. The medetomidine, midazolam, and butorphanol, called MMB, and medetomidine, alfaxalone, and butorphanol, called MAB, are popular in Japan. However, the drawbacks of midazolam, including its extended recovery time, and the narrow safety margin of MAB, have prompted research for suitable alternatives. This study replaced midazolam in the MMB combination with remimazolam (RMZ), which is noted for its ultra-short half-life. The resulting combination, called MRB, was effective in providing a wider safety margin compared to MAB while maintaining an anesthesia depth equivalent level to that of MMB in mice. Notably, MRB consistently exhibited better recovery scores after antagonist administration in contrast to MMB. Furthermore, the re-sedation phenomenon observed with MMB was not observed with MRB. The rapid metabolism of RMZ enables reliable anesthesia induction, circumventing the complications linked to MAB. Overall, MRB excelled in providing extended surgical anesthesia and swift post-antagonist recovery. These results highlight the potential of RMZ for broader animal research applications.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":"223-232"},"PeriodicalIF":2.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091355/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139511922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Circadian and sleep phenotypes in a mouse model of Alzheimer's disease characterized by intracellular accumulation of amyloid β oligomers.","authors":"Tomoyuki Sato, Tomoyo Ochiishi, Sayaka Higo-Yamamoto, Katsutaka Oishi","doi":"10.1538/expanim.23-0104","DOIUrl":"10.1538/expanim.23-0104","url":null,"abstract":"<p><p>Disturbances in sleep-wake and circadian rhythms may reportedly precede the onset of cognitive symptoms in the early stages of Alzheimer's disease (AD); however, the underlying mechanisms of these AD-induced sleep disturbances remain unelucidated. To specifically evaluate the involvement of amyloid beta (Aβ) oligomers in AD-induced sleep disturbances, we examined circadian and sleep phenotypes using an Aβ-GFP transgenic (Aβ-GFP Tg) mouse characterized by intracellular accumulation of Aβ oligomers. The circadian rhythm and free-running period of wheel running activity were identical between Aβ-GFP Tg and littermate wild-type mice. The durations of rapid eye movement (REM) sleep were elongated in Aβ-GFP Tg mice; however, the durations of non-REM sleep and wakefulness were unaffected. The Aβ-GFP Tg mice exhibited shifts in the electroencephalogram (EEG) power spectra toward higher frequencies in the inactive light phase. These findings suggest that the intracellular accumulation of Aβ oligomers might be associated with sleep quality; however, its impact on circadian systems is limited.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":"186-192"},"PeriodicalIF":2.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138801034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}