Ana E. Jenike, Katharine M. Jenike, Kevin J. Peterson, Bastian Fromm, Marc K. Halushka
{"title":"Direct observation of the evolution of cell-type-specific microRNA expression signatures supports the hematopoietic origin model of endothelial cells","authors":"Ana E. Jenike, Katharine M. Jenike, Kevin J. Peterson, Bastian Fromm, Marc K. Halushka","doi":"10.1111/ede.12438","DOIUrl":"10.1111/ede.12438","url":null,"abstract":"<p>The evolution of specialized cell-types is a long-standing interest of biologists, but given the deep time-scales very difficult to reconstruct or observe. microRNAs have been linked to the evolution of cellular complexity and may inform on specialization. The endothelium is a vertebrate-specific specialization of the circulatory system that enabled a critical new level of vasoregulation. The evolutionary origin of these endothelial cells is unclear. We hypothesized that Mir-126, an endothelial cell-specific microRNA may be informative. We here reconstruct the evolutionary history of Mir-126. Mir-126 likely appeared in the last common ancestor of vertebrates and tunicates, which was a species without an endothelium, within an intron of the evolutionary much older EGF Like Domain Multiple (Egfl) locus. Mir-126 has a complex evolutionary history due to duplications and losses of both the host gene and the microRNA. Taking advantage of the strong evolutionary conservation of the microRNA among Olfactores, and using RNA in situ hybridization, we localized Mir-126 in the tunicate <i>Ciona robusta</i>. We found exclusive expression of the mature Mir-126 in granular amebocytes, supporting a long-proposed scenario that endothelial cells arose from hemoblasts, a type of proto-endothelial amoebocyte found throughout invertebrates. This observed change of expression of Mir-126 from proto-endothelial amoebocytes in the tunicate to endothelial cells in vertebrates is the first direct observation of the evolution of a cell-type in relation to microRNA expression indicating that microRNAs can be a prerequisite of cell-type evolution.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 3","pages":"226-239"},"PeriodicalIF":2.9,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12438","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9760673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phoronida—A small clade with a big role in understanding the evolution of lophophorates","authors":"Ludwik Gąsiorowski","doi":"10.1111/ede.12437","DOIUrl":"10.1111/ede.12437","url":null,"abstract":"<p>Phoronids, together with brachiopods and bryozoans, form the animal clade Lophophorata. Modern lophophorates are quite diverse—some can biomineralize while others are soft-bodied, they could be either solitary or colonial, and they develop through various eccentric larval stages that undergo different types of metamorphoses. The diversity of this clade is further enriched by numerous extinct fossil lineages with their own distinct body plans and life histories. In this review, I discuss how data on phoronid development, genetics, and morphology can inform our understanding of lophophorate evolution. The actinotrocha larvae of phoronids is a well documented example of intercalation of the new larval body plan, which can be used to study how new life stages emerge in animals with biphasic life cycle. The genomic and embryonic data from phoronids, in concert with studies of the fossil lophophorates, allow the more precise reconstruction of the evolution of lophophorate biomineralization. Finally, the regenerative and asexual abilities of phoronids can shed new light on the evolution of coloniality in lophophorates. As evident from those examples, Phoronida occupies a central role in the discussion of the evolution of lophophorate body plans and life histories.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 4","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12437","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9360986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jukka Jernvall, Nicolas Di-Poï, Marja L. Mikkola, Claudius F. Kratochwil
{"title":"Toward a universal measure of robustness across model organs and systems","authors":"Jukka Jernvall, Nicolas Di-Poï, Marja L. Mikkola, Claudius F. Kratochwil","doi":"10.1111/ede.12436","DOIUrl":"10.1111/ede.12436","url":null,"abstract":"<p>The development of an individual must be capable of resisting the harmful effects of internal and external perturbations. This capacity, called robustness, can make the difference between normal variation and disease. Some systems and organs are more resilient in their capacity to correct the effects of internal disturbances such as mutations. Similarly, organs and organisms differ in their capacity to be resilient against external disturbances, such as changes in temperature. Furthermore, all developmental systems must be somewhat flexible to permit evolutionary change, and understanding robustness requires a comparative framework. Over the last decades, most research on developmental robustness has been focusing on specific model systems and organs. Hence, we lack tools that would allow cross-species and cross-organ comparisons. Here, we emphasize the need for a uniform framework to experimentally test and quantify robustness across study systems and suggest that the analysis of fluctuating asymmetry might be a powerful proxy to do so. Such a comparative framework will ultimately help to resolve why and how organs of the same and different species differ in their sensitivity to internal (e.g., mutations) and external (e.g., temperature) perturbations and at what level of biological organization buffering capacities exist and therefore create robustness of the developmental system.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 6","pages":"410-417"},"PeriodicalIF":2.9,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12436","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9687995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Promises and limits of an agency perspective in evolutionary developmental biology","authors":"Erica M. Nadolski, Armin P. Moczek","doi":"10.1111/ede.12432","DOIUrl":"10.1111/ede.12432","url":null,"abstract":"<p>An agent-based perspective in the study of complex systems is well established in diverse disciplines, yet is only beginning to be applied to evolutionary developmental biology. In this essay, we begin by defining agency and associated terminology formally. We then explore the assumptions and predictions of an agency perspective, apply these to select processes and key concept areas relevant to practitioners of evolutionary developmental biology, and consider the potential epistemic roles that an agency perspective might play in evo devo. Throughout, we discuss evidence supportive of agential dynamics in biological systems relevant to evo devo and explore where agency thinking may enrich the explanatory reach of research efforts in evolutionary developmental biology.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 6","pages":"371-392"},"PeriodicalIF":2.9,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9642676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna M. Kudla, Ximena Miranda, H. Frederik Nijhout
{"title":"Ontogenetic trajectories and early shape differentiation of treehopper pronota (Hemiptera: Membracidae)","authors":"Anna M. Kudla, Ximena Miranda, H. Frederik Nijhout","doi":"10.1111/ede.12431","DOIUrl":"10.1111/ede.12431","url":null,"abstract":"<p>Membracids (family: Membracidae), commonly known as treehoppers, are recognizable by their enlarged and often elaborated pronota. Much of the research investigating the development and evolution of this structure has focused on the fifth instar to adult transition, in which the pronotum undergoes the largest transformation as it takes on adult identity. However, little is known about the earlier nymphal stages, the degree to which the pronotum develops at these timepoints, and how development has changed relative to the ancestral state. Here, we studied the nymphal stages and adults of five morphologically distinct membracid species and of <i>Aetalion reticulatum</i> (family: Aetalionidae), the outgroup which was used as an ancestral state proxy. We found that shape differentiation in the pronotum of membracids can start as early as the second instar stage. Most shape differentiation occurs within the nymphal stages and not in the embryo since the shape of the first-instar pronotum did not differ from the outgroup species in all but one species we investigated. We found the anterior–posterior axis of the pronotum elongated at a faster relative rate in membracid species than in <i>A. reticulatum</i>, which contributed to the development of exaggerated pronotal size. Finally, we found differences in the morphogenesis of shape across species. We suggest this is due to the developmental and evolutionary divergence of differential growth patterning of the dorsal surface of the pronotum, not only across species, but also between stages within the same species. This lability may contribute to the evolvability and diversification of the membracid pronotum.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 3","pages":"240-252"},"PeriodicalIF":2.9,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9596708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Developing the genotype-to-phenotype relationship in evolutionary theory: A primer of developmental features","authors":"Emilie C. Snell-Rood, Sean M. Ehlman","doi":"10.1111/ede.12434","DOIUrl":"10.1111/ede.12434","url":null,"abstract":"<p>For decades, there have been repeated calls for more integration across evolutionary and developmental biology. However, critiques in the literature and recent funding initiatives suggest this integration remains incomplete. We suggest one way forward is to consider how we elaborate the most basic concept of development, the relationship between genotype and phenotype, in traditional models of evolutionary processes. For some questions, when more complex features of development are accounted for, predictions of evolutionary processes shift. We present a primer on concepts of development to clarify confusion in the literature and fuel new questions and approaches. The basic features of development involve expanding a base model of genotype-to-phenotype to include the genome, space, and time. A layer of complexity is added by incorporating developmental systems, including signal-response systems and networks of interactions. The developmental emergence of function, which captures developmental feedbacks and phenotypic performance, offers further model elaborations that explicitly link fitness with developmental systems. Finally, developmental features such as plasticity and developmental niche construction conceptualize the link between a developing phenotype and the external environment, allowing for a fuller inclusion of ecology in evolutionary models. Incorporating aspects of developmental complexity into evolutionary models also accommodates a more pluralistic focus on the causal importance of developmental systems, individual organisms, or agents in generating evolutionary patterns. Thus, by laying out existing concepts of development, and considering how they are used across different fields, we can gain clarity in existing debates around the extended evolutionary synthesis and pursue new directions in evolutionary developmental biology. Finally, we consider how nesting developmental features in traditional models of evolution can highlight areas of evolutionary biology that need more theoretical attention.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 6","pages":"393-409"},"PeriodicalIF":2.9,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12434","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9612660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cranial cartilages: Players in the evolution of the cranium during evolution of the chordates in general and of the vertebrates in particular","authors":"Takayuki Onai, Toshihiro Aramaki, Akira Takai, Kisa Kakiguchi, Shigenobu Yonemura","doi":"10.1111/ede.12433","DOIUrl":"10.1111/ede.12433","url":null,"abstract":"<p>The present contribution is chiefly a review, augmented by some new results on amphioxus and lamprey anatomy, that draws on paleontological and developmental data to suggest a scenario for cranial cartilage evolution in the phylum chordata. Consideration is given to the cartilage-related tissues of invertebrate chordates (amphioxus and some fossil groups like vetulicolians) as well as in the two major divisions of the subphylum Vertebrata (namely, agnathans, and gnathostomes). In the invertebrate chordates, which can be considered plausible proxy ancestors of the vertebrates, only a viscerocranium is present, whereas a neurocranium is absent. For this situation, we examine how cartilage-related tissues of this head region prefigure the cellular cartilage types in the vertebrates. We then focus on the vertebrate neurocranium, where cyclostomes evidently lack neural-crest derived trabecular cartilage (although this point needs to be established more firmly). In the more complex gnathostome, several neural-crest derived cartilage types are present: namely, the trabecular cartilages of the prechordal region and the parachordal cartilage the chordal region. In sum, we present an evolutionary framework for cranial cartilage evolution in chordates and suggest aspects of the subject that should profit from additional study.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 3","pages":"197-208"},"PeriodicalIF":2.9,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12433","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9831813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calvarial suture interdigitation in hadrosaurids (Ornithischia: Ornithopoda): Perspectives through ontogeny and evolution","authors":"Thomas W. Dudgeon, David C. Evans","doi":"10.1111/ede.12430","DOIUrl":"10.1111/ede.12430","url":null,"abstract":"<p>Lambeosaurine hadrosaurids exhibited extreme modifications to the skull, where the premaxillae, nasals, and prefrontals were modified to form their iconic supracranial crests. This morphology contrasts with their sister group, Hadrosaurinae, which possessed the plesiomorphic arrangement of bones. Although studies have discussed differences between lambeosaurine and hadrosaurine skull morphology and ontogeny, there is little information detailing suture modifications through ontogeny and evolution. Suture morphology is of particular interest due to its correlation with the mechanical loading of the skull in extant vertebrates. We quantify and contrast the morphology of calvarial sutures in iguanodontians and ontogenetic series of <i>Corythosaurus</i> and <i>Gryposaurus</i> to test whether the evolution of lambeosaurine crests impacted the mechanical loading of the skull. We found that suture interdigitation (SI) increases through ontogeny in hadrosaurids, although this increase is more extreme in <i>Corythosaurus</i> than <i>Gryposaurus</i>, and overall suture complexity (i.e., overall shape) remained constant. Lambeosaurines also have higher SI than other iguanodontians, even in crestless juveniles, suggesting that increased sinuosity is unrelated to the structural support of the crest. Hadrosaurines and basal iguanodontians did not differ. Similarly, lambeosaurines have more complexly shaped sutures than hadrosaurines and basal iguanodontians, while the latter two groups do not differ. Taken together, these results suggest that lambeosaurine calvarial sutures are more interdigitated than other iguanodontians, and although suture sinuosity increased through ontogeny, the suture shape remained constant. These ontogenetic and evolutionary patterns suggest that increased suture complexity in lambeosaurines coincided with crest evolution, and corresponding modifications to their facial skeleton altered the distribution of stress while feeding.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 3","pages":"209-225"},"PeriodicalIF":2.9,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12430","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9849202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lizet R. Rodas, Serban M. Sarbu, Raluca Bancila, Devon Price, Žiga Fišer, Meredith Protas
{"title":"Standing genetic variation as a potential mechanism of novel cave phenotype evolution in the freshwater isopod, Asellus aquaticus","authors":"Lizet R. Rodas, Serban M. Sarbu, Raluca Bancila, Devon Price, Žiga Fišer, Meredith Protas","doi":"10.1111/ede.12428","DOIUrl":"10.1111/ede.12428","url":null,"abstract":"<p>Novel phenotypes can come about through a variety of mechanisms including standing genetic variation from a founding population. Cave animals are an excellent system in which to study the evolution of novel phenotypes such as loss of pigmentation and eyes. <i>Asellus aquaticus</i> is a freshwater isopod crustacean found in Europe and has both a surface and a cave ecomorph which vary in multiple phenotypic traits. An orange eye phenotype was previously revealed by F<sub>2</sub> crosses and backcrosses to the cave parent within two examined Slovenian cave populations. Complete loss of pigmentation, both in eye and body, is epistatic to the orange eye phenotype and therefore the orange eye phenotype is hidden within the cave populations. Our goal was to investigate the origin of the orange eye alleles within the Slovenian cave populations by examining <i>A. aquaticus</i> individuals from Slovenian and Romanian surface populations and <i>Asellus aquaticus infernus</i> individuals from a Romanian cave population. We found orange eye individuals present in lab raised surface populations of <i>A. aquaticus</i> from both Slovenia and Romania. Using a mapping approach with crosses between individuals of two surface populations, we found that the region known to be responsible for the orange eye phenotype within the two previously examined Slovenian cave populations was also responsible within both the Slovenian and the Romanian surface populations. Complementation crosses between orange eye Slovenian and orange eye Romanian surface individuals suggest that the same gene is responsible for the orange eye phenotype in both surface populations. Additionally, we observed a low frequency phenotype of eye loss in crosses generated between the two surface populations and also in the Romanian surface population. Finally, in a cave population from Romania, <i>A. aquaticus infernus</i>, we found that the same region is also responsible for the orange eye phenotype as the Slovenian cave populations and the Slovenian and Romanian surface populations. Therefore, we present evidence that variation present in the cave populations could originate from standing variation present in the surface populations and/or transgressive hybridization of different surface phylogenetic lineages rather than de novo mutations.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"25 2","pages":"137-152"},"PeriodicalIF":2.9,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2e/85/nihms-1908025.PMC10331845.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9822238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}