Xinyue Wang , Junjie Wang , Yang Han , Xingchun Jiang , Sixian Cao , Dongze Xu , Tiancheng Xiong , Xiang Guo , Cui Wang , Sha Guo , Hongying Song , Ting Dong , Le Zhang , Zhenming An , Jun Liu , Jing Han , Hao Wu
{"title":"Utilizing a hydrophobic primary container surface to reduce the formation of subvisible particles in monoclonal antibody solution caused by fluid shear","authors":"Xinyue Wang , Junjie Wang , Yang Han , Xingchun Jiang , Sixian Cao , Dongze Xu , Tiancheng Xiong , Xiang Guo , Cui Wang , Sha Guo , Hongying Song , Ting Dong , Le Zhang , Zhenming An , Jun Liu , Jing Han , Hao Wu","doi":"10.1016/j.ejpb.2024.114502","DOIUrl":"10.1016/j.ejpb.2024.114502","url":null,"abstract":"<div><div>The exposure of protein molecules to interfaces may cause protein aggregation and particle formation in protein formulations, especially hydrophobic interfaces, which may promote protein aggregation in solution. In this study, we found that modification of the surface properties by application of a hydrophobic Octadecyltrichlorosilane (OTS) could reduce the generation of protein aggregates and particles in protein solution induced by fluid shear. A stable protein adsorption layer was formed at the hydrophobic interface through the strong hydrophobic interaction between the protein and hydrophobic surface, which could prevent the aggregated protein from falling off into the bulk solution to form subvisible particles and insoluble protein aggregates. In addition, human complement enzyme linked immunosorbent assay results showed that the particles that were generated in the OTS-coated container did not activate human complement which indicated the OTS-coated container could be used as primary containers for certain types of monoclonal antibody formulation.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114502"},"PeriodicalIF":4.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dosage by design – 3D printing individualized cabozantinib tablets with immediate release","authors":"Jonas Lenhart, Dominique J. Lunter","doi":"10.1016/j.ejpb.2024.114501","DOIUrl":"10.1016/j.ejpb.2024.114501","url":null,"abstract":"<div><div>Production of patient-specific dosage forms is important to improve patient adherence and effectiveness while reducing the prevalence and severity of adverse effects. Due to its possibility of rapid prototyping 3D printing can be used to produce individual dosages while utilizing techniques such as hot melt extrusion to increase the bioavailability of poorly soluble drugs. In this work, Parteck MXP and Kollicoat IR were used as water-soluble polymer bases for formulation development for 3D printing of various dosages incorporating cabozantinib while enabling immediate release. The effect of tablet design and the excipients sorbitol, croscarmellose sodium, and sodium starch glycolate was investigated for this goal. A way to calculate the size of tablets for predetermined dosages is proposed to enable the printing of individual strengths from one formulation. Rheological data were collected to deepen the understanding of the role of melt viscosity in 3D printing and hot melt extrusion processes. The production of immediate-release cabozantinib tablets containing every therapeutically relevant dosage in a single unit produced by two-step 3D printing was realized.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114501"},"PeriodicalIF":4.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939641124003278/pdfft?md5=51bc06c5a32ccc2ffa4abcaf1de58807&pid=1-s2.0-S0939641124003278-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dissolving microneedle patches for delivery of amniotic mesenchymal stem cell metabolite products for skin regeneration in UV-aging induced mice","authors":"Andang Miatmoko , Berlian Sarasitha Hariawan , Devy Maulidya Cahyani , Qonita Kurnia Anjani , Febri Annuryanti , Rifda Tarimi Octavia , Djoko Legowo , Kusuma Eko Purwantari , Noorma Rosita , Purwati , Ryan F. Donnelly , Dewi Melani Hariyadi","doi":"10.1016/j.ejpb.2024.114482","DOIUrl":"10.1016/j.ejpb.2024.114482","url":null,"abstract":"<div><p>Microneedles offer a promising solution to enhancing dermal delivery of amniotic mesenchymal stem cell metabolite product (AMSC-MP), which contains hydrophilic protein components with high molecular weight, for the purposes of skin rejuvenation and improving human health. This study aimed to evaluate the physicochemical characteristics and in vivo efficacy of AMSC-MP-loaded microneedle patches for effectively regenerating skin tissues in UV-aging induced mice. Dissolving microneedle patches, composed of polyvinyl alcohol with an MW of 9–10 kDa and polyvinylpyrrolidone with an MW of 56 kDa, were fabricated using the double-casting method at three AMSC-MP concentrations: i.e., 30 % (MN30), 25 % (MN25), and 20 % (MN20). The microneedles patches were then evaluated for morphological, mechanical resistance, and insertion properties. An ex vivo release study was also conducted using the Franz cell method, and in vivo efficacy and irritation were then determined through collagen density scores, fibroblast cell counts, and skin irritation studies of UV-aging induced mice. The AMSC-MP microneedles displayed a pyramidal shape with 500 µm sharp tips. Mechanical testing revealed that MN30 achieved its deepest insertion into Parafilm® M (447.44 ± 37.21 µm), while MN25 achieved its deepest insertion into full-thickness porcine skin (717.92 ± 25.40 µm). The study revealed a controlled EGF release for up to 24 h, with MN20 exhibiting the highest deposition (55.94 ± 12.34 %). These findings demonstrate the successful penetration of microneedles through the stratum corneum and viable epidermis. Collagen density scores and fibroblast cell counts were significantly higher in all microneedle formulations than the control, with MN30 having the highest values. Inflammatory cell counts indicated minimal presence suggesting non-irritation in the in vivo study. Dissolving microneedle patches exhibited favorable characteristics and efficiently delivered AMSC-MP with minimal potential for irritation, providing potential technology for delivering biological anti-aging agents for the purposes of fostering skin regeneration.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114482"},"PeriodicalIF":4.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Avelia Devina Calista Nainggolan , Pietradewi Hartrianti , Qonita Kurnia Anjani , Ryan F. Donnelly , Agus Budiawan Naro Putra , Katherine Kho , Arief Kurniawan , Rr. Kirana Andranilla , Shereen Angelina Rattu , Delly Ramadon
{"title":"Double-layer dissolving microneedles for delivery of mesenchymal stem cell Secretome: Formulation, characterisation and skin irritation study","authors":"Avelia Devina Calista Nainggolan , Pietradewi Hartrianti , Qonita Kurnia Anjani , Ryan F. Donnelly , Agus Budiawan Naro Putra , Katherine Kho , Arief Kurniawan , Rr. Kirana Andranilla , Shereen Angelina Rattu , Delly Ramadon","doi":"10.1016/j.ejpb.2024.114495","DOIUrl":"10.1016/j.ejpb.2024.114495","url":null,"abstract":"<div><p>Regenerative therapy based on stem cells have been developed, focusing on either stem cell or secretome delivery. Most marketed cellular and gene therapy products are available as injectable dosage forms, leading to several limitations requiring alternative routes, such as the intradermal route. Microneedles, capable of penetrating<!--> <!-->the <em>stratum corneum</em> <!-->barrier, offer a potential alternative for intradermal delivery. This present study aimed to develop double-layer dissolving microneedles (DMN) for the delivery of freeze-dried mesenchymal stem cell secretome. DMNs were fabricated using a two-step casting method and composed of two polymer combinations: poly(vinyl pyrrolidone) (PVP) with poly(vinyl alcohol) (PVA) or PVP with sodium hyaluronate (SH). The manufactured DMNs underwent assessments for morphology, mechanical strength, in skin dissolution, protein content, <em>in vitro</em> permeation, <em>in vivo</em> skin irritation, and physical stability. Based on evaluations of morphology and mechanical strength, two formulas (F5 and F12) met acceptance criteria. Evaluation of protein content revealed that F12 (PVP-SH combination) had a higher protein content than F5 (PVP-PVA combination), 99.02 ± 3.24 μg and 78.36 ± 3.75 μg respectively. <em>In vitro</em> permeation studies showed that F5 delivered secretome protein by 100.84 ± 0.88%, while F12 delivered 99.63 ± 9.21% in 24 h. After four days of observation on<!--> <em>Sprague-Dawley</em> <!-->rat’s skin, no signs of irritation, such as oedema and redness, was observed after applying both formulations. The safety of using PVP-PVA and PVP-SH combinations as excipients for DMN secretome delivery has been confirmed, promising significant advancements in biotherapeutic development in the future.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114495"},"PeriodicalIF":4.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melinda Kakuk , Lilla Alexandra Mészáros , Dóra Farkas , Péter Tonka-Nagy , Bence Tóth , Zsombor Kristóf Nagy , István Antal , Nikolett Kállai-Szabó
{"title":"Evaluation of floatability characteristics of gastroretentive tablets using VIS imaging with artificial neural networks","authors":"Melinda Kakuk , Lilla Alexandra Mészáros , Dóra Farkas , Péter Tonka-Nagy , Bence Tóth , Zsombor Kristóf Nagy , István Antal , Nikolett Kállai-Szabó","doi":"10.1016/j.ejpb.2024.114493","DOIUrl":"10.1016/j.ejpb.2024.114493","url":null,"abstract":"<div><p>Gastroretentive dosage forms are recommended for several active substances because it is often necessary for the drug to be released from the carrier system into the stomach over an extended period. Among gastroretentive dosage forms, floating tablets are a very popular pharmaceutical technology. In this study, it was investigated whether a rapid, nondestructive method can be used to characterize the floating properties of a tablet.</p><p>To accomplish our objective, the same composition was compressed, and varied compression forces were applied to achieve the desired tablet. In addition to physical examinations, digital microscopic images of the tablets were captured and analyzed using image analysis techniques, allowing the investigation of the floatability of the dosage form. Image processing algorithms and artificial neural networks (ANNs) were utilized to classify the samples based on their strength and floatability. The input dataset consisted solely of the acquired images.</p><p>It has been shown by our research that visible imaging coupled with pattern recognition neural networks is an efficient way to categorize these samples based on their floatability. Rapid and non-destructive digital imaging of tablet surfaces is facilitated by this method, offering insights into both crushing strength and floating properties.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114493"},"PeriodicalIF":4.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939641124003199/pdfft?md5=e38607ae3f7d7580be3bd74f59e4d949&pid=1-s2.0-S0939641124003199-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Zhao , Linlin Li , Eneko Larrañeta, Alejandro J. Paredes, Ryan F. Donnelly
{"title":"Novel long-acting treatment for schizophrenia based on paliperidone dissolving and implantable microarray patches","authors":"Li Zhao , Linlin Li , Eneko Larrañeta, Alejandro J. Paredes, Ryan F. Donnelly","doi":"10.1016/j.ejpb.2024.114481","DOIUrl":"10.1016/j.ejpb.2024.114481","url":null,"abstract":"<div><p>Schizophrenia is a severe mental disorder that affects millions of people worldwide. Several atypical antipsychotic medications, including paliperidone (PPD), has been developed and proven effective in treating it. To date, four PPD extended-release products have been launched commercially, providing up to six months of therapeutic effect with a single administration. However, the need for hospital injections by professional healthcare workers not only lead to poor patients’ adherence, but also put additional pressure on the healthcare system. Therefore, three PPD microarray patch (PPD MAP) systems based on dissolving microneedle technology and implantable microneedle technology were developed in this work. The two dissolving microarray patch systems contained either PPD crude drug (PPD DMAP-CD) or PPD nanocrystal (PPD DMAP-NC) and the implantable MAP contained PPD crude drug (PPD IMAP). All three types of PPD MAPs showed excellent mechanical and insertion properties as they achieved over 256 µm insertion depth in skin model. <em>In vitro</em> release study showed that PPD released from IMAP in a much more sustained manner (up to 14 days) than PPD did from DMAPs (7 days), with only 20 % initial burst release from IMAP compared with 43–71 % from DMAPs. The MAP dissolution study showed that both DMAPs can be immediately dissolved within less than 3 min once inserted into the skin, indicating a faster action potential compared with IMAP. <em>Ex vivo</em> delivery study showed that 1.68 ± 0.23 mg, 1.39 ± 0.07 mg, and 1.18 ± 0.12 mg were delivered from DMAP-CD, DMAP-NC and IMAP, respectively, demonstrating that over 50 % and up to 70 % of PPD in the MAPs can be delivered into the skin. The IMAP offers most sustained release of PPD whereas DMAP-NC exhibits fastest PPD release (11.19 % vs 20.01 % into Franz cell receiver compartment over 24 h). This work presents a promising alternative for the sustained delivery of antipsychotic drugs, allowing for patient self-administration and extended release concurrently. Patients may potentially use both DMAP and IMAP to achieve a sustained release of PPD while also avoid having an initial therapeutic lag.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114481"},"PeriodicalIF":4.4,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939641124003072/pdfft?md5=875cf926980de69e01972ae85544a448&pid=1-s2.0-S0939641124003072-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Ziental , Beata Czarczynska-Goslinska , Marcin Wysocki , Marcin Ptaszek , Łukasz Sobotta
{"title":"Advances and perspectives in use of semisolid formulations for photodynamic methods","authors":"Daniel Ziental , Beata Czarczynska-Goslinska , Marcin Wysocki , Marcin Ptaszek , Łukasz Sobotta","doi":"10.1016/j.ejpb.2024.114485","DOIUrl":"10.1016/j.ejpb.2024.114485","url":null,"abstract":"<div><p>Although nearly 30 years have passed since the introduction of the first clinically approved photosensitizer for photodynamic therapy, progress in developing new pharmaceutical formulations remains unsatisfactory. This review highlights that despite years of research, many recurring challenges and issues remain unresolved. The paper includes an analysis of selected essential studies involving aminolevulinic acid and its derivatives, as well as other photosensitizers with potential for development as medical products. Among various possible vehicles, special attention is given to gelatin, alginates, poly(ethylene oxide), polyacrylic acid, and chitosan. The focus is particularly on infectious and cancerous diseases. Key aspects of developing new semi-solid drug forms should prioritize the creation of easily manufacturable and biocompatible preparations for clinical use. At the same time, new formulations should preserve the primary function of photosensitizers, which is the generation of reactive oxygen species capable of destroying pathogenic cells or tumors. Additionally, the use of adjuvant properties of carriers, which can enhance the effectiveness of macrocycles, is emphasized, especially in chitosan-based antibacterial formulations. Current research indicates that many promising dyes and macrocyclic compounds with high potential as photosensitizers in photodynamic therapy remain unexplored in formulation and development work. This review outlines potential new and previously explored pathways for advancing photosensitizers as active pharmaceutical ingredients (APIs).</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114485"},"PeriodicalIF":4.4,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939641124003114/pdfft?md5=c72e19980532407062469c8f8726084e&pid=1-s2.0-S0939641124003114-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcin K. Heljak , Sumeyye Cesur , Elif Ilhan , Wojciech Swieszkowski , Oguzhan Gunduz , Ewa Kijeńska-Gawrońska
{"title":"In silico evaluation of corneal patch eluting anti-VEGF agents concept","authors":"Marcin K. Heljak , Sumeyye Cesur , Elif Ilhan , Wojciech Swieszkowski , Oguzhan Gunduz , Ewa Kijeńska-Gawrońska","doi":"10.1016/j.ejpb.2024.114494","DOIUrl":"10.1016/j.ejpb.2024.114494","url":null,"abstract":"<div><p>This study introduces a novel approach utilizing a temporary drug-eluting hydrogel corneal patch to prevent neovascularization, alongside a numerical predictive tool for assessing the release and transport kinetics of bevacizumab (BVZ) after the keratoplasty. A key focus was investigating the impact of tear film clearance on the release kinetics and drug transport from the designed corneal patch. The proposed tear drug clearance model incorporates the physiological mechanism of lacrimal flow (tear turnover), distinguishing itself from previous models. Validation against experimental data confirms the model’s robustness, despite limitations such as a 2D axisymmetrical framework and omission of blink frequency and saccadic eye movements potential effects. Analysis highlights the significant influence of lacrimal flow on ocular drug transport, with the corneal patch extending BVZ residence time compared to topical administration. This research sets the stage for exploring multi-layer drug-eluting corneal patches as a promising therapeutic strategy in ocular health.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114494"},"PeriodicalIF":4.4,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939641124003205/pdfft?md5=152eccd17f2b0f67ac858428c27b5d96&pid=1-s2.0-S0939641124003205-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao-Ran Dai , Yun Liu , Hong-Li Guo , Ke-Yu Lu , Ya-Hui Hu , Yuan-Yuan Zhang , Jie Wang , Xuan-Sheng Ding , Zheng Jiao , Rui Cheng , Feng Chen
{"title":"A small step toward precision dosing of caffeine in preterm infants: An external evaluation of published population pharmacokinetic models","authors":"Hao-Ran Dai , Yun Liu , Hong-Li Guo , Ke-Yu Lu , Ya-Hui Hu , Yuan-Yuan Zhang , Jie Wang , Xuan-Sheng Ding , Zheng Jiao , Rui Cheng , Feng Chen","doi":"10.1016/j.ejpb.2024.114484","DOIUrl":"10.1016/j.ejpb.2024.114484","url":null,"abstract":"<div><h3>Background</h3><p>Several population pharmacokinetic (PopPK) models of caffeine in preterm infants have been published, but the extrapolation of these models to facilitate model-informed precision dosing (MIPD) in clinical practice is uncertain. This study aimed to comprehensively evaluate their predictive performance using an external<u>,</u> independent dataset.</p></div><div><h3>Methods</h3><p>Data used for external evaluation were based on an independent cohort of preterm infants. Currently available PopPK models for caffeine in preterm infants were identified and re-established. Prediction- and simulation-based diagnostics were used to assess model predictability. The influence of prior information was assessed using Bayesian forecasting.</p></div><div><h3>Results</h3><p>120 plasma samples from 76 preterm infants were included in the evaluation dataset. Twelve PopPK models of caffeine in preterm infants were re-established based on our previously published study. Although two models showed superior predictive performance, none of the 12 PopPK models met all the clinical acceptance criteria of these external evaluation items. Besides, the external predictive performances of most models were unsatisfactory in prediction- and simulation-based diagnostics. Nevertheless, the application of Bayesian forecasting significantly improved the predictive performance, even with only one prior observation.</p></div><div><h3>Conclusions</h3><p>Two models that included the most covariates had the best predictive performance across all external assessments. Inclusion of different covariates, heterogeneity of preterm infant characteristics, and different study designs influenced predictive performance. Thorough evaluation is needed before these PopPK models can be implemented in clinical practice. The implementation of MIPD for caffeine in preterm infants could benefit from the combination of PopPK models and Bayesian forecasting as a helpful tool.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114484"},"PeriodicalIF":4.4,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939641124003102/pdfft?md5=7f1f5dc7b7bf3fb103d4cf84c6de86ef&pid=1-s2.0-S0939641124003102-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hala M. Fadda , Hannah Weiler , Maria Carvalho , You Zhuan Lee , Hadi Dassouki , Rasha AbuBlan , Sonia Iurian , Aasma Hamid , Gökhan Şeremet , Zhiping Li , Catherine Tuleu , Paola Minghetti , Giovanni M. Pauletti
{"title":"Pediatric oral extemporaneous preparations and practices: International Pharmaceutical Federation (FIP) global study","authors":"Hala M. Fadda , Hannah Weiler , Maria Carvalho , You Zhuan Lee , Hadi Dassouki , Rasha AbuBlan , Sonia Iurian , Aasma Hamid , Gökhan Şeremet , Zhiping Li , Catherine Tuleu , Paola Minghetti , Giovanni M. Pauletti","doi":"10.1016/j.ejpb.2024.114483","DOIUrl":"10.1016/j.ejpb.2024.114483","url":null,"abstract":"<div><p>This publication is the first to report current, global, pediatric oral extemporaneous compounding practices. Complete survey responses were received from 479 participants actively involved in compounding across all the World Health Organization (WHO) regions. The survey addressed oral formulation of extemporaneous liquids, including the use of commercial or in-house vehicles, flavoring excipients, source of formulation recipes, and beyond use dates (BUDs). Over 90% of the survey participants prepared oral liquids. Solid dosage forms, comprising capsules and powder papers (sachets), were also frequently prepared for children, albeit to a lesser extent. The top 20 active pharmaceutical ingredients compounded for children, globally, were: omeprazole, captopril, spironolactone, propranolol, furosemide, phenobarbital, hydrochlorothiazide, ursodeoxycholic acid, sildenafil, melatonin, clonidine, enalapril, dexamethasone, baclofen, caffeine, chloral hydrate, trimethoprim, atenolol, hydrocortisone, carvedilol and prednisolone. Diuretics, drugs for acid-related disorders, and beta-blockers were the top three most frequently compounded classes per the WHO Anatomical Therapeutic Chemical (ATC) classification system. The principal need identified for the practice of extemporaneous compounding for children was the development of an international, open-access formulary that includes validated formulations, as well as updated compounding literature and guidelines. Furthermore, improved access to data from stability studies to allow compounding of formulations with extended BUDs.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114483"},"PeriodicalIF":4.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}