Jianmin Chen , Wenqin Zhang , Xinyi Zhang , Yuelian Zhang , Guozhong Yang , Dechao Yang , Yunhua Gao
{"title":"Fabrication and characterization of a multifunctional hyaluronic acid-based microneedle system for diabetic wound healing","authors":"Jianmin Chen , Wenqin Zhang , Xinyi Zhang , Yuelian Zhang , Guozhong Yang , Dechao Yang , Yunhua Gao","doi":"10.1016/j.ejpb.2025.114704","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetes mellitus (DM)-associated wounds, characterized by chronic bacterial infections and elevated glucose levels, present significant challenges to effective healing. To overcome these issues, a novel transdermal drug delivery system was developed, integrating microneedles (MNs) with biofilm-penetrating capability, the wound-healing properties of hyaluronic acid (HA), the antibacterial effects of silver nanoparticles (AgNPs), and the glucose-lowering action of insulin (Ins). Named HAMNs@AgNPs-Ins, this system demonstrated optimal morphological characteristics, robust mechanical strength, and 100 % skin penetration efficiency. It exhibited sustained antibacterial activity <em>in vitro</em>, ensured skin safety, and provided controlled, steady blood glucose reductions, achieving a 72.29 % reduction at 8 h, compared to the sharp decline seen with subcutaneous injection. Additionally, wound healing experiments showed a significant improvement in the healing rate of 89.66 ± 1.34 % in the HAMNs@AgNPs-Ins group, compared to 48.19 ± 9.03 % in the control group. These results underscore the potential of HAMNs@AgNPs-Ins as an effective treatment for DM-associated wounds.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"211 ","pages":"Article 114704"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641125000815","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes mellitus (DM)-associated wounds, characterized by chronic bacterial infections and elevated glucose levels, present significant challenges to effective healing. To overcome these issues, a novel transdermal drug delivery system was developed, integrating microneedles (MNs) with biofilm-penetrating capability, the wound-healing properties of hyaluronic acid (HA), the antibacterial effects of silver nanoparticles (AgNPs), and the glucose-lowering action of insulin (Ins). Named HAMNs@AgNPs-Ins, this system demonstrated optimal morphological characteristics, robust mechanical strength, and 100 % skin penetration efficiency. It exhibited sustained antibacterial activity in vitro, ensured skin safety, and provided controlled, steady blood glucose reductions, achieving a 72.29 % reduction at 8 h, compared to the sharp decline seen with subcutaneous injection. Additionally, wound healing experiments showed a significant improvement in the healing rate of 89.66 ± 1.34 % in the HAMNs@AgNPs-Ins group, compared to 48.19 ± 9.03 % in the control group. These results underscore the potential of HAMNs@AgNPs-Ins as an effective treatment for DM-associated wounds.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.