EpigenomicsPub Date : 2025-01-18DOI: 10.1080/17501911.2025.2453412
Hongmei Zhang, Jiasong Duan, Luhang Han, Naznin Alam, Meredith Ray, Fen Yang, Yu Jiang, Susan Ewart, John W Holloway, Wilfried Karmaus, Shu-Li Wang, S Hasan Arshad
{"title":"DNA methylation at birth and IgE trajectories from birth to adolescence, different patterns between White and Asian.","authors":"Hongmei Zhang, Jiasong Duan, Luhang Han, Naznin Alam, Meredith Ray, Fen Yang, Yu Jiang, Susan Ewart, John W Holloway, Wilfried Karmaus, Shu-Li Wang, S Hasan Arshad","doi":"10.1080/17501911.2025.2453412","DOIUrl":"https://doi.org/10.1080/17501911.2025.2453412","url":null,"abstract":"<p><strong>Aim: </strong>We aim to assess association of DNA methylation (DNAm) at birth with total immunoglobulin E (IgE) trajectories from birth to late adolescence and whether such association is ethnicity-specific.</p><p><strong>Methods: </strong>We examined the association of total IgE trajectories from birth to late adolescence with DNAm at birth in two independent birth cohorts, the Isle of wight birth cohort (IOWBC) in UK (<i>n</i> = 796; White) and the maternal and infant cohort study (MICS) in Taiwan (<i>n</i> = 60; Asian). Biological pathways and methylation quantitative trait loci (methQTL) for associated Cytosine-phosphate-Guanine sites were studied.</p><p><strong>Results: </strong>Two total IgE trajectories, high vs. low, were inferred from each of the two cohorts. Associations of DNAm at 103 CpGs with IgE trajectories in IOWBC and at 476 CpGs in MICS were identified. Between the two cohorts, of the identified CpGs, one was in common, methQTL site cg16711274 (mapped to gene MINAR1), and 17 pathways were common with at least four linked to airway diseases.</p><p><strong>Conclusion: </strong>The findings suggest at-birth epigenetics may explain ethnicity differences in total IgE trajectories later in life.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"1-10"},"PeriodicalIF":3.0,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigenomicsPub Date : 2025-01-17DOI: 10.1080/17501911.2025.2453415
Yu Funahashi, Yogesh Dwivedi
{"title":"Epigenetics and suicidal behavior in adolescents: a critical review.","authors":"Yu Funahashi, Yogesh Dwivedi","doi":"10.1080/17501911.2025.2453415","DOIUrl":"https://doi.org/10.1080/17501911.2025.2453415","url":null,"abstract":"<p><p>Suicide continues to be a significant public health issue globally, claiming over 700,000 lives annually. It is, therefore, important to assess the suicide risk properly and provide intervention in a timely fashion. While the heritability of suicidal behavior is around 50%, it does not explain the factors involved in causality. Recent evidence suggests that gene x environment interaction plays a vital role in suicidal behavior. In this paper, we critically evaluate the association between adolescent suicidal behavior and epigenetic modifications, including DNA methylation, histone modification, and non-coding RNAs, as well as epigenetic-based treatment options. It was noted that the prevalence of suicidal behavior in adolescents varied by age and sex and the presence of psychiatric disorders. Childhood adversity was closely associated with suicidal behavior. Studies show that alterations in epigenetic modifications may increase the risk of suicidal behavior independent of mental illnesses. Because epigenetic factors are reversible, environmental enrichment or the use of pharmacological agents that can target specific epigenetic modulation may be able to reduce suicidal behavior in this population.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"1-16"},"PeriodicalIF":3.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigenomicsPub Date : 2025-01-16DOI: 10.1080/17501911.2025.2453413
Nashwa El-Khazragy, Sara Elsayed Abdelrahman, Amal Darwish, Eman H A Hemida
{"title":"Combined replacement of lnc-MEG3 and miR-155 elicit tumor suppression in multiple myeloma.","authors":"Nashwa El-Khazragy, Sara Elsayed Abdelrahman, Amal Darwish, Eman H A Hemida","doi":"10.1080/17501911.2025.2453413","DOIUrl":"https://doi.org/10.1080/17501911.2025.2453413","url":null,"abstract":"<p><strong>Aims: </strong>To investigate the biological impact of simultaneous overexpression of lncRNA MEG3 and miR-155, termed a \"double hit,\" on multiple myeloma (MM) cells compared to individual biomarker substitution.</p><p><strong>Materials and methods: </strong>Human MM cells were transfected with MEG3-overexpressed plasmids and miR-155 mimics. Cell cytotoxicity, apoptosis, and gene expression were evaluated in transfected cells and clinical samples.</p><p><strong>Results: </strong>MEG3 and miR-155 were significantly downregulated in MM patients, with lower expression levels correlating with advanced disease stages and poorer survival. Dual overexpression induced potent cytotoxic effects in MM cells.</p><p><strong>Conclusion: </strong>MEG3 and miR-155 are potential tumor suppressors in MM. Simultaneous overexpression of both biomarkers could represent a novel therapeutic strategy, and their levels could serve as diagnostic and prognostic markers.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"1-11"},"PeriodicalIF":3.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigenomicsPub Date : 2025-01-01Epub Date: 2024-11-25DOI: 10.1080/17501911.2024.2432854
Joshua J Levy, Alos B Diallo, Marietta K Saldias Montivero, Sameer Gabbita, Lucas A Salas, Brock C Christensen
{"title":"Insights to aging prediction with AI based epigenetic clocks.","authors":"Joshua J Levy, Alos B Diallo, Marietta K Saldias Montivero, Sameer Gabbita, Lucas A Salas, Brock C Christensen","doi":"10.1080/17501911.2024.2432854","DOIUrl":"10.1080/17501911.2024.2432854","url":null,"abstract":"<p><p>Over the past century, human lifespan has increased remarkably, yet the inevitability of aging persists. The disparity between biological age, which reflects pathological deterioration and disease, and chronological age, indicative of normal aging, has driven prior research focused on identifying mechanisms that could inform interventions to reverse excessive age-related deterioration and reduce morbidity and mortality. DNA methylation has emerged as an important predictor of age, leading to the development of epigenetic clocks that quantify the extent of pathological deterioration beyond what is typically expected for a given age. Machine learning technologies offer promising avenues to enhance our understanding of the biological mechanisms governing aging by further elucidating the gap between biological and chronological ages. This perspective article examines current algorithmic approaches to epigenetic clocks, explores the use of machine learning for age estimation from DNA methylation, and discusses how refining the interpretation of ML methods and tailoring their inferences for specific patient populations and cell types can amplify the utility of these technologies in age prediction. By harnessing insights from machine learning, we are well-positioned to effectively adapt, customize and personalize interventions aimed at aging.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"49-57"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Placental expression and methylation of angiogenic factors in assisted reproductive technology pregnancies from India.","authors":"Deepali Sundrani, Aishwarya Kapare, Himanshi Yadav, Karuna Randhir, Sanjay Gupte, Sadhana Joshi","doi":"10.1080/17501911.2024.2438593","DOIUrl":"10.1080/17501911.2024.2438593","url":null,"abstract":"<p><strong>Aim: </strong>This study aims to examine the gene expression and DNA methylation patterns of angiogenic factors in the placentae of Indian women who underwent assisted reproductive technology (ART) procedures and their association with maternal one-carbon metabolites and birth outcome.</p><p><strong>Methods: </strong>Placental gene expression and DNA methylation of angiogenic factors (<i>VEGF</i>, <i>PlGF</i>, <i>FLT-1</i>, <i>KDR</i>) in Indian women who underwent ART procedures (<i>n</i> = 64) and women who conceived naturally (Non-ART) (<i>n</i> = 93) was investigated using RT-qPCR and Epitect Methyl-II PCR assay kits. Maternal plasma one-carbon metabolites were assessed by CMIA technology.</p><p><strong>Result: </strong>Gene expression of <i>FLT-1</i> and <i>KDR</i> was higher (<i>p</i> < 0.05) in the ART placentae. Placental global DNA methylation levels were higher (<i>p</i> < 0.01) and DNA methylation levels of <i>VEGF</i> promoter were lower (<i>p</i> < 0.05) in ART compared to non-ART women. Maternal plasma folate and vitamin B<sub>12</sub> levels were higher (<i>p</i> < 0.01) in the ART group. Gene expression of <i>PlGF</i> was negatively associated with maternal plasma folate (<i>p</i> < 0.05) whereas KDR was positively associated with maternal plasma homocysteine (<i>p</i> < 0.05). Gene expression of <i>KDR</i> was positively associated with chest circumference of the baby (<i>p</i> < 0.05).</p><p><strong>Conclusion: </strong>Hypomethylation of <i>VEGF</i> and increased expression of <i>FLT-1</i> and <i>KDR</i> was observed in the placentae of women who underwent ART procedure.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"21-31"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigenomicsPub Date : 2025-01-01Epub Date: 2024-11-25DOI: 10.1080/17501911.2024.2432851
Nelly N Olova
{"title":"Epigenetic rejuvenation: a journey backwards towards an epigenomic ground state.","authors":"Nelly N Olova","doi":"10.1080/17501911.2024.2432851","DOIUrl":"10.1080/17501911.2024.2432851","url":null,"abstract":"","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"1-3"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigenomicsPub Date : 2025-01-01Epub Date: 2024-12-02DOI: 10.1080/17501911.2024.2435257
Li Zhou, Shuai Mei, Xiaozhu Ma, Qidamugai Wuyun, Ziyang Cai, Chen Chen, Hu Ding, Jiangtao Yan
{"title":"Multi-omics insights into the pathogenesis of diabetic cardiomyopathy: epigenetic and metabolic profiles.","authors":"Li Zhou, Shuai Mei, Xiaozhu Ma, Qidamugai Wuyun, Ziyang Cai, Chen Chen, Hu Ding, Jiangtao Yan","doi":"10.1080/17501911.2024.2435257","DOIUrl":"10.1080/17501911.2024.2435257","url":null,"abstract":"<p><strong>Aim: </strong>Diabetic cardiomyopathy (DbCM), a complex metabolic disease, greatly threatens human health due to therapeutic limitations. Multi-omics approaches facilitate the elucidation of its intrinsic pathological changes.</p><p><strong>Methods: </strong>Metabolomics, RNA-seq, proteomics, and assay of transposase-accessible chromatin (ATAC-seq) were utilized to elucidate multidimensional molecular alterations in DbCM.</p><p><strong>Results: </strong>In the heart and plasma of mice with DbCM, metabolomic analysis demonstrated significant differences in branched-chain amino acids (BCAAs) and lipids. Subsequent RNA-seq and proteomics showed that the key genes, including BCKDHB, PPM1K, Cpt1b, Fabp4, Acadm, Acadl, Acadvl, HADH, HADHA, HADHB, Eci1, Eci2, PDK4, and HMGCS2, were aberrantly regulated, contributing to the disorder of BCAAs and fatty acids. ATAC-seq analysis underscored the pivotal role of epigenetic regulation by revealing dynamic shifts in chromatin accessibility and a robust positive correlation with gene expression patterns in diabetic cardiomyopathy mice. Furthermore, motif analysis identified that KLF15 as a critical transcription factor in DbCM, regulating the core genes implicated with BCAAs metabolism.</p><p><strong>Conclusion: </strong>Our research delved into the metabolic alterations and epigenetic landscape and revealed that KLF15 may be a promising candidate for therapeutic intervention in DbCM.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"33-48"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727868/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigenomicsPub Date : 2025-01-01Epub Date: 2024-11-27DOI: 10.1080/17501911.2024.2430169
Rajita Vatapalli, Alex P Rossi, Ho Man Chan, Jingwen Zhang
{"title":"Cancer epigenetic therapy: recent advances, challenges, and emerging opportunities.","authors":"Rajita Vatapalli, Alex P Rossi, Ho Man Chan, Jingwen Zhang","doi":"10.1080/17501911.2024.2430169","DOIUrl":"10.1080/17501911.2024.2430169","url":null,"abstract":"<p><p>Epigenetic dysregulation is an important nexus in the development and maintenance of human cancers. This review provides an overview of how understanding epigenetic dysregulation in cancers has led to insights for novel cancer therapy development. Over the past two decades, significant strides have been made in drug discovery efforts targeting cancer epigenetic mechanisms, leading to successes in clinical development and approval of cancer epigenetic therapeutics. This article will discuss the current therapeutic rationale guiding the discovery and development of epigenetic therapeutics, key learnings from clinical experiences and new opportunities on the horizon.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"59-74"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142727415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigenomicsPub Date : 2025-01-01Epub Date: 2024-12-05DOI: 10.1080/17501911.2024.2435244
Gareth Pollin, Young-In Chi, Angela J Mathison, Michael T Zimmermann, Gwen Lomberk, Raul Urrutia
{"title":"Emergent properties of the lysine methylome reveal regulatory roles via protein interactions and histone mimicry.","authors":"Gareth Pollin, Young-In Chi, Angela J Mathison, Michael T Zimmermann, Gwen Lomberk, Raul Urrutia","doi":"10.1080/17501911.2024.2435244","DOIUrl":"10.1080/17501911.2024.2435244","url":null,"abstract":"<p><strong>Aims: </strong>Epigenomics has significantly advanced through the incorporation of Systems Biology approaches. This study aims to investigate the human lysine methylome as a system, using a data-science approach to reveal its emergent properties, particularly focusing on histone mimicry and the broader implications of lysine methylation across the proteome.</p><p><strong>Methods: </strong>We employed a data-science-driven OMICS approach, leveraging high-dimensional proteomic data to study the lysine methylome. The analysis focused on identifying sequence-based recognition motifs of lysine methyltransferases and evaluating the prevalence and distribution of lysine methylation across the human proteome.</p><p><strong>Results: </strong>Our analysis revealed that lysine methylation impacts 15% of the known proteome, with a notable bias toward mono-methylation. We identified sequence-based recognition motifs of 13 lysine methyltransferases, highlighting candidates for histone mimicry. These findings suggest that the selective inhibition of individual lysine methyltransferases could have systemic effects rather than merely targeting histone methylation.</p><p><strong>Conclusions: </strong>The lysine methylome has significant mechanistic value and should be considered in the design and testing of therapeutic strategies, particularly in precision oncology. The study underscores the importance of considering non-histone proteins involved in DNA damage and repair, cell signaling, metabolism, and cell cycle pathways when targeting lysine methyltransferases.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"5-20"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142779712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigenomicsPub Date : 2024-12-20DOI: 10.1080/17501911.2024.2442293
Jenny Zhen-Duan, Katia M Canenguez, Anna E Wilson, Yue Gu, Harshitha G Valluri, Alejandra D Chavez, M Austin Argentieri, Anna Boonin Schachter, Haotian Wu, Andrea A Baccarelli, Martha L Daviglus, Sylvia Wassertheil-Smoller, Erica T Warner, Alexandra E Shields
{"title":"Religion, spirituality, and DNA methylation in HPA-axis genes among Hispanic/Latino adults.","authors":"Jenny Zhen-Duan, Katia M Canenguez, Anna E Wilson, Yue Gu, Harshitha G Valluri, Alejandra D Chavez, M Austin Argentieri, Anna Boonin Schachter, Haotian Wu, Andrea A Baccarelli, Martha L Daviglus, Sylvia Wassertheil-Smoller, Erica T Warner, Alexandra E Shields","doi":"10.1080/17501911.2024.2442293","DOIUrl":"https://doi.org/10.1080/17501911.2024.2442293","url":null,"abstract":"<p><strong>Aim: </strong>Investigate associations between religion and spirituality (R&S) and DNA methylation of four HPA-axis genes (i.e. 14 CpG sites) among 992 adults from the Hispanic Community Health Study/Study of Latinos cohorts.</p><p><strong>Methods: </strong>We assessed 1) the association between R&S measures and mean percent methylation overall and stratified by nativity status (US-born or immigrant) and 2) if interactions between R&S and methylation differed by nativity status.</p><p><strong>Results: </strong>Among individuals with the <i>FKBP5</i> CC genotype, increased spirituality scores were associated with significantly lower methylation levels among immigrants, compared to US-born participants. Organizational religiosity (e.g. service attendance) was associated with increased <i>FKBP5</i> (CC genotype) methylation among immigrants.</p><p><strong>Conclusion: </strong>R&S may influence HPA-axis functioning differently based on nativity status; a finding that could offer insight into mechanisms leading to health disparities.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"1-12"},"PeriodicalIF":3.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}