Maria Farina-Morillas, Laia Ollé-Monràs, Silvana Ce Maas, Isabel de Rojas-P, Miguel F Segura, Jose A Seoane
{"title":"Epigenetic synthetic lethality as a cancer therapeutic strategy: synergy of experimental and computational approaches.","authors":"Maria Farina-Morillas, Laia Ollé-Monràs, Silvana Ce Maas, Isabel de Rojas-P, Miguel F Segura, Jose A Seoane","doi":"10.1080/17501911.2025.2548756","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer treatment is an ongoing challenge, as directly targeting oncogenic drivers is often unfeasible in many patients due to the lack of druggable targets. This has led to the exploration of alternative strategies, such as exploiting synthetic lethality (SL) relationships between genes. SL facilitates the indirect targeting of oncogenic drivers, as exemplified by the clinical success of PARP inhibitors against BRCA-mutated tumors. Advances in high-throughput perturbation screens and multi-omics technologies have deepened our understanding of SL relationships, while computational models enhance SL predictions to better reflect biological complexity. However, while numerous experimental and computational methods have been developed to identify SL interactions, difficulties remain in translating these findings into clinical applications.This review combines recent progress on SL relationships in cancer with emerging insights into epigenetic regulation, highlighting how epigenetic drugs (epidrugs) can provide new opportunities for targeted interventions, offering a way to minimize off-target effects and enhance therapeutic precision. To advance SL-based therapies, efforts must focus not only on identifying new SL interactions but also on consolidating existing knowledge and integrating experimental and computational approaches to characterize the vulnerabilities of cancer cells. Strengthening this foundation will be critical for the effective development of SL-based cancer treatments.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"1069-1081"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12520091/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17501911.2025.2548756","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer treatment is an ongoing challenge, as directly targeting oncogenic drivers is often unfeasible in many patients due to the lack of druggable targets. This has led to the exploration of alternative strategies, such as exploiting synthetic lethality (SL) relationships between genes. SL facilitates the indirect targeting of oncogenic drivers, as exemplified by the clinical success of PARP inhibitors against BRCA-mutated tumors. Advances in high-throughput perturbation screens and multi-omics technologies have deepened our understanding of SL relationships, while computational models enhance SL predictions to better reflect biological complexity. However, while numerous experimental and computational methods have been developed to identify SL interactions, difficulties remain in translating these findings into clinical applications.This review combines recent progress on SL relationships in cancer with emerging insights into epigenetic regulation, highlighting how epigenetic drugs (epidrugs) can provide new opportunities for targeted interventions, offering a way to minimize off-target effects and enhance therapeutic precision. To advance SL-based therapies, efforts must focus not only on identifying new SL interactions but also on consolidating existing knowledge and integrating experimental and computational approaches to characterize the vulnerabilities of cancer cells. Strengthening this foundation will be critical for the effective development of SL-based cancer treatments.
期刊介绍:
Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community.
Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.