Eukaryotic Cell最新文献

筛选
英文 中文
Role of Pex11p in Lipid Homeostasis in Yarrowia lipolytica. Pex11p在溶脂耶氏菌脂质稳态中的作用。
Eukaryotic Cell Pub Date : 2015-05-01 Epub Date: 2015-03-27 DOI: 10.1128/EC.00051-15
Rémi Dulermo, Thierry Dulermo, Heber Gamboa-Meléndez, France Thevenieau, Jean-Marc Nicaud
{"title":"Role of Pex11p in Lipid Homeostasis in Yarrowia lipolytica.","authors":"Rémi Dulermo,&nbsp;Thierry Dulermo,&nbsp;Heber Gamboa-Meléndez,&nbsp;France Thevenieau,&nbsp;Jean-Marc Nicaud","doi":"10.1128/EC.00051-15","DOIUrl":"https://doi.org/10.1128/EC.00051-15","url":null,"abstract":"<p><p>Peroxisomes are essential organelles in the cells of most eukaryotes, from yeasts to mammals. Their role in β-oxidation is particularly essential in yeasts; for example, in Saccharomyces cerevisiae, fatty acid oxidation takes place solely in peroxisomes. In this species, peroxisome biogenesis occurs when lipids are present in the culture medium, and it involves the Pex11p protein family: ScPex11p, ScPex25p, ScPex27p, and ScPex34p. Yarrowia lipolytica has three Pex11p homologues, which are YALI0C04092p (YlPex11p), YALI0C04565p (YlPex11C), and YALI0D25498p (Pex11/25p). We found that these genes are regulated by oleic acid, and as has been observed in other organisms, YlPEX11 deletion generated giant peroxisomes when mutant yeast were grown in oleic acid medium. Moreover, ΔYlpex11 was unable to grow on fatty acid medium and showed extreme dose-dependent sensitivity to oleic acid. Indeed, when the strain was grown in minimum medium with 0.5% glucose and 3% oleic acid, lipid body lysis and cell death were observed. Cell death and lipid body lysis may be partially explained by an imbalance in the expression of the genes involved in lipid storage, namely, DGA1, DGA2, and LRO1, as well as that of TGL4, which is involved in lipid remobilization. TGL4 deletion and DGA2 overexpression resulted in decreased oleic acid sensitivity and delayed cell death of ΔYlpex11, which probably stemmed from the release of free fatty acids into the cytoplasm. All these results show that YlPex11p plays an important role in lipid homeostasis in Y. lipolytica. </p>","PeriodicalId":11891,"journal":{"name":"Eukaryotic Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/EC.00051-15","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33170249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Control of Plasma Membrane Permeability by ABC Transporters. ABC转运蛋白对质膜通透性的控制。
Eukaryotic Cell Pub Date : 2015-05-01 Epub Date: 2015-02-27 DOI: 10.1128/EC.00021-15
Svetlana Khakhina, Soraya S Johnson, Raman Manoharlal, Sarah B Russo, Corinne Blugeon, Sophie Lemoine, Anna B Sunshine, Maitreya J Dunham, L Ashley Cowart, Frédéric Devaux, W Scott Moye-Rowley
{"title":"Control of Plasma Membrane Permeability by ABC Transporters.","authors":"Svetlana Khakhina,&nbsp;Soraya S Johnson,&nbsp;Raman Manoharlal,&nbsp;Sarah B Russo,&nbsp;Corinne Blugeon,&nbsp;Sophie Lemoine,&nbsp;Anna B Sunshine,&nbsp;Maitreya J Dunham,&nbsp;L Ashley Cowart,&nbsp;Frédéric Devaux,&nbsp;W Scott Moye-Rowley","doi":"10.1128/EC.00021-15","DOIUrl":"https://doi.org/10.1128/EC.00021-15","url":null,"abstract":"<p><p>ATP-binding cassette transporters Pdr5 and Yor1 from Saccharomyces cerevisiae control the asymmetric distribution of phospholipids across the plasma membrane as well as serving as ATP-dependent drug efflux pumps. Mutant strains lacking these transporter proteins were found to exhibit very different resistance phenotypes to two inhibitors of sphingolipid biosynthesis that act either late (aureobasidin A [AbA]) or early (myriocin [Myr]) in the pathway leading to production of these important plasma membrane lipids. These pdr5Δ yor1 strains were highly AbA resistant but extremely sensitive to Myr. We provide evidence that these phenotypic changes are likely due to modulation of the plasma membrane flippase complexes, Dnf1/Lem3 and Dnf2/Lem3. Flippases act to move phospholipids from the outer to the inner leaflet of the plasma membrane. Genetic analyses indicate that lem3Δ mutant strains are highly AbA sensitive and Myr resistant. These phenotypes are fully epistatic to those seen in pdr5Δ yor1 strains. Direct analysis of AbA-induced signaling demonstrated that loss of Pdr5 and Yor1 inhibited the AbA-triggered phosphorylation of the AGC kinase Ypk1 and its substrate Orm1. Microarray experiments found that a pdr5Δ yor1 strain induced a Pdr1-dependent induction of the entire Pdr regulon. Our data support the view that Pdr5/Yor1 negatively regulate flippase function and activity of the nuclear Pdr1 transcription factor. Together, these data argue that the interaction of the ABC transporters Pdr5 and Yor1 with the Lem3-dependent flippases regulates permeability of AbA via control of plasma membrane protein function as seen for the high-affinity tryptophan permease Tat2. </p>","PeriodicalId":11891,"journal":{"name":"Eukaryotic Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/EC.00021-15","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33090371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 32
Puf4 regulates both splicing and decay of HXL1 mRNA encoding the unfolded protein response transcription factor in Cryptococcus neoformans. 在新型隐球菌中,Puf4调节编码未折叠蛋白应答转录因子的HXL1 mRNA的剪接和衰减。
Eukaryotic Cell Pub Date : 2015-04-01 Epub Date: 2015-02-13 DOI: 10.1128/EC.00273-14
Virginia E Glazier, Jan Naseer Kaur, Nancy T Brown, Ashley A Rivera, John C Panepinto
{"title":"Puf4 regulates both splicing and decay of HXL1 mRNA encoding the unfolded protein response transcription factor in Cryptococcus neoformans.","authors":"Virginia E Glazier,&nbsp;Jan Naseer Kaur,&nbsp;Nancy T Brown,&nbsp;Ashley A Rivera,&nbsp;John C Panepinto","doi":"10.1128/EC.00273-14","DOIUrl":"https://doi.org/10.1128/EC.00273-14","url":null,"abstract":"<p><p>The endoplasmic reticulum (ER) responds to errors in protein folding or processing by induction of the unfolded protein response (UPR). During conditions of ER stress, unconventional splicing of an mRNA encoding the UPR-responsive transcription factor occurs at the ER surface, resulting in activation of the UPR. UPR activation is necessary for adaptation to ER stress and for the pathogenic fungus Cryptococcus neoformans is an absolute requirement for temperature adaptation and virulence. In this study, we have determined that C. neoformans has co-opted a conserved PUF RNA binding protein to regulate the posttranscriptional processing of the HXL1 mRNA encoding the UPR transcription factor. PUF elements were identified in both the 5' and 3' untranslated regions of the HXL1 transcript, and both elements bound Puf4. Deletion of PUF4 resulted in delayed unconventional splicing of HXL1 mRNA and delayed induction of Hxl1 target genes. In addition, the HXL1 transcript was stabilized in the absence of Puf4. The puf4Δ mutant exhibited temperature sensitivity but was as virulent as the wild type, despite a reduction in fungal burden in the brains of infected mice. Our results reveal a novel regulatory role in which a PUF protein influences the unconventional splicing of the mRNA encoding the UPR-responsive transcription factor. These data suggest a unique role for a PUF protein in controlling UPR kinetics via the posttranscriptional regulation of the mRNA encoding the UPR transcription factor Hxl1. </p>","PeriodicalId":11891,"journal":{"name":"Eukaryotic Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/EC.00273-14","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33053617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
MrSkn7 controls sporulation, cell wall integrity, autolysis, and virulence in Metarhizium robertsii. MrSkn7控制罗伯特绿僵菌的产孢、细胞壁完整性、自溶和毒力。
Eukaryotic Cell Pub Date : 2015-04-01 Epub Date: 2015-02-20 DOI: 10.1128/EC.00266-14
Yanfang Shang, Peilin Chen, Yixiong Chen, Yuzhen Lu, Chengshu Wang
{"title":"MrSkn7 controls sporulation, cell wall integrity, autolysis, and virulence in Metarhizium robertsii.","authors":"Yanfang Shang,&nbsp;Peilin Chen,&nbsp;Yixiong Chen,&nbsp;Yuzhen Lu,&nbsp;Chengshu Wang","doi":"10.1128/EC.00266-14","DOIUrl":"https://doi.org/10.1128/EC.00266-14","url":null,"abstract":"<p><p>Two-component signaling pathways generally include sensor histidine kinases and response regulators. We identified an ortholog of the response regulator protein Skn7 in the insect-pathogenic fungus Metarhizium robertsii, which we named MrSkn7. Gene deletion assays and functional characterizations indicated that MrSkn7 functions as a transcription factor. The MrSkn7 null mutant of M. robertsii lost the ability to sporulate and had defects in cell wall biosynthesis but was not sensitive to oxidative and osmotic stresses compared to the wild type. However, the mutant was able to produce spores under salt stress. Insect bioassays using these spores showed that the virulence of the mutant was significantly impaired compared to that of the wild type due to the failures to form the infection structure appressorium and evade host immunity. In particular, deletion of MrSkn7 triggered cell autolysis with typical features such as cell vacuolization, downregulation of repressor genes, and upregulation of autolysis-related genes such as extracellular chitinases and proteases. Promoter binding assays confirmed that MrSkn7 could directly or indirectly control different putative target genes. Taken together, the results of this study help us understand the functional divergence of Skn7 orthologs as well as the mechanisms underlying the development and control of virulence in insect-pathogenic fungi. </p>","PeriodicalId":11891,"journal":{"name":"Eukaryotic Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/EC.00266-14","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33079228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Defining the morphology and mechanism of the hemoglobin transport pathway in Plasmodium falciparum-infected erythrocytes. 确定恶性疟原虫感染红细胞中血红蛋白运输途径的形态和机制。
Eukaryotic Cell Pub Date : 2015-04-01 Epub Date: 2015-02-27 DOI: 10.1128/EC.00267-14
Katharine J Milani, Timothy G Schneider, Theodore F Taraschi
{"title":"Defining the morphology and mechanism of the hemoglobin transport pathway in Plasmodium falciparum-infected erythrocytes.","authors":"Katharine J Milani,&nbsp;Timothy G Schneider,&nbsp;Theodore F Taraschi","doi":"10.1128/EC.00267-14","DOIUrl":"https://doi.org/10.1128/EC.00267-14","url":null,"abstract":"<p><p>Hemoglobin degradation during the asexual cycle of Plasmodium falciparum is an obligate process for parasite development and survival. It is established that hemoglobin is transported from the host erythrocyte to the parasite digestive vacuole (DV), but this biological process is not well characterized. Three-dimensional reconstructions made from serial thin-section electron micrographs of untreated, trophozoite-stage P. falciparum-infected erythrocytes (IRBC) or IRBC treated with different pharmacological agents provide new insight into the organization and regulation of the hemoglobin transport pathway. Hemoglobin internalization commences with the formation of cytostomes from localized, electron-dense collars at the interface of the parasite plasma and parasitophorous vacuolar membranes. The cytostomal collar does not function as a site of vesicle fission but rather serves to stabilize the maturing cytostome. We provide the first evidence that hemoglobin transport to the DV uses an actin-myosin motor system. Short-lived, hemoglobin-filled vesicles form from the distal end of the cytostomes through actin and dynamin-mediated processes. Results obtained with IRBC treated with N-ethylmaleimide (NEM) suggest that fusion of hemoglobin-containing vesicles with the DV may involve a soluble NEM-sensitive factor attachment protein receptor-dependent mechanism. In this report, we identify new key components of the hemoglobin transport pathway and provide a detailed characterization of its morphological organization and regulation. </p>","PeriodicalId":11891,"journal":{"name":"Eukaryotic Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/EC.00267-14","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33090369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 53
Signaling domains of mucin Msb2 in Candida albicans. 白色念珠菌中粘蛋白 Msb2 的信号结构域。
Eukaryotic Cell Pub Date : 2015-04-01 Epub Date: 2015-01-30 DOI: 10.1128/EC.00264-14
Marc Swidergall, Lasse van Wijlick, Joachim F Ernst
{"title":"Signaling domains of mucin Msb2 in Candida albicans.","authors":"Marc Swidergall, Lasse van Wijlick, Joachim F Ernst","doi":"10.1128/EC.00264-14","DOIUrl":"10.1128/EC.00264-14","url":null,"abstract":"<p><p>Candida albicans adapts to the human host by environmental sensing using the Msb2 signal mucin, which regulates fungal morphogenesis and resistance characteristics. Msb2 is anchored within the cytoplasmic membrane by a single transmembrane (TM) region dividing it into a large N-terminal exodomain, which is shed, and a small cytoplasmic domain. Analyses of strains carrying deleted Msb2 variants revealed an exodomain segment required for cleavage, shedding, and all functions of Msb2. Phosphorylation of the mitogen-activated protein kinase (MAP kinase) Cek1 was regulated by three distinct regions in Msb2: in unstressed cells, N-terminal sequences repressed phosphorylation, while its induction under cell wall stress required the cytoplasmic tail (C-tail) and sequences N-terminally flanking the TM region, downstream of the proposed cleavage site. Within the latter Msb2 region, overlapping but not identical sequences were also required for hyphal morphogenesis, basal resistance to antifungals, and, in unstressed cells, downregulation of the PMT1 transcript, encoding protein O-mannosyltransferase-1. Deletion of two-thirds of the exodomain generated a truncated Msb2 variant with a striking ability to induce hyperfilamentous growth, which depended on the presence of the Msb2-interacting protein Sho1, the MAP kinase Cek1, and the Efg1 transcription factor. Under cell wall stress, the cytoplasmic tail relocalized partially to the nucleus and contributed to regulation of 117 genes, as revealed by transcriptomic analyses. Genes regulated by the C-tail contained binding sites for the Ace2 and Azf1 transcription factors and included the ALS cell wall genes. We concluded that Msb2 fulfills its numerous functions by employing functional domains that are distributed over its entire length. </p>","PeriodicalId":11891,"journal":{"name":"Eukaryotic Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385809/pdf/zek359.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33016703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets. 真菌细胞中钙-钙调磷酸酶信号通路的成分及其作为抗真菌靶点的潜力。
Eukaryotic Cell Pub Date : 2015-04-01 Epub Date: 2015-01-30 DOI: 10.1128/EC.00271-14
Shuyuan Liu, Yinglong Hou, Weiguo Liu, Chunyan Lu, Weixin Wang, Shujuan Sun
{"title":"Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets.","authors":"Shuyuan Liu,&nbsp;Yinglong Hou,&nbsp;Weiguo Liu,&nbsp;Chunyan Lu,&nbsp;Weixin Wang,&nbsp;Shujuan Sun","doi":"10.1128/EC.00271-14","DOIUrl":"https://doi.org/10.1128/EC.00271-14","url":null,"abstract":"<p><p>In recent years, the emergence of fungal resistance has become frequent, partly due to the widespread clinical use of fluconazole, which is minimally toxic and effective in the prevention and treatment of Candida albicans infections. The limited selection of antifungal drugs for clinical fungal infection therapy has prompted us to search for new antifungal drug targets. Calcium, which acts as the second messenger in both mammals and fungi, plays a direct role in controlling the expression patterns of its signaling systems and has important roles in cell survival. In addition, calcium and some of the components, mainly calcineurin, in the fungal calcium signaling pathway mediate fungal resistance to antifungal drugs. Therefore, an overview of the components of the fungal calcium-calcineurin signaling network and their potential roles as antifungal targets is urgently needed. The calcium-calcineurin signaling pathway consists of various channels, transporters, pumps, and other proteins or enzymes. Many transcriptional profiles have indicated that mutant strains that lack some of these components are sensitized to fluconazole or other antifungal drugs. In addition, many researchers have identified efficient compounds that exhibit antifungal activity by themselves or in combination with antifungal drugs by targeting some of the components in the fungal calcium-calcineurin signaling pathway. This targeting disrupts Ca(2+) homeostasis, which suggests that this pathway contains potential targets for the development of new antifungal drugs. </p>","PeriodicalId":11891,"journal":{"name":"Eukaryotic Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/EC.00271-14","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33016706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 133
Host erythrocyte environment influences the localization of exported protein 2, an essential component of the Plasmodium translocon. 宿主红细胞环境影响输出蛋白2的定位,这是疟原虫转位的重要组成部分。
Eukaryotic Cell Pub Date : 2015-04-01 Epub Date: 2015-02-06 DOI: 10.1128/EC.00228-14
Elamaran Meibalan, Mary Ann Comunale, Ana M Lopez, Lawrence W Bergman, Anand Mehta, Akhil B Vaidya, James M Burns
{"title":"Host erythrocyte environment influences the localization of exported protein 2, an essential component of the Plasmodium translocon.","authors":"Elamaran Meibalan,&nbsp;Mary Ann Comunale,&nbsp;Ana M Lopez,&nbsp;Lawrence W Bergman,&nbsp;Anand Mehta,&nbsp;Akhil B Vaidya,&nbsp;James M Burns","doi":"10.1128/EC.00228-14","DOIUrl":"https://doi.org/10.1128/EC.00228-14","url":null,"abstract":"<p><p>Malaria parasites replicating inside red blood cells (RBCs) export a large subset of proteins into the erythrocyte cytoplasm to facilitate parasite growth and survival. PTEX, the parasite-encoded translocon, mediates protein transport across the parasitophorous vacuolar membrane (PVM) in Plasmodium falciparum-infected erythrocytes. Proteins exported into the erythrocyte cytoplasm have been localized to membranous structures, such as Maurer's clefts, small vesicles, and a tubovesicular network. Comparable studies of protein trafficking in Plasmodium vivax-infected reticulocytes are limited. With Plasmodium yoelii-infected reticulocytes, we identified exported protein 2 (Exp2) in a proteomic screen of proteins putatively transported across the PVM. Immunofluorescence studies showed that P. yoelii Exp2 (PyExp2) was primarily localized to the PVM. Unexpectedly, PyExp2 was also associated with distinct, membrane-bound vesicles in the reticulocyte cytoplasm. This is in contrast to P. falciparum in mature RBCs, where P. falciparum Exp2 (PfExp2) is exclusively localized to the PVM. Two P. yoelii-exported proteins, PY04481 (encoded by a pyst-a gene) and PY06203 (PypAg-1), partially colocalized with these PyExp2-positive vesicles. Further analysis revealed that with P. yoelii, Plasmodium berghei, and P. falciparum, cytoplasmic Exp2-positive vesicles were primarily observed in CD71(+) reticulocytes versus mature RBCs. In transgenic P. yoelii 17X parasites, the association of hemagglutinin-tagged PyExp2 with the PVM and cytoplasmic vesicles was retained, but the pyexp2 gene was refractory to deletion. These data suggest that the localization of Exp2 in mouse and human RBCs can be influenced by the host cell environment. Exp2 may function at multiple points in the pathway by which parasites traffic proteins into and through the reticulocyte cytoplasm. </p>","PeriodicalId":11891,"journal":{"name":"Eukaryotic Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/EC.00228-14","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33038693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Yeast β-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin. 酵母β-1,6-葡聚糖是酿酒酵母K2毒素的主要靶点。
Eukaryotic Cell Pub Date : 2015-04-01 Epub Date: 2015-02-20 DOI: 10.1128/EC.00287-14
Juliana Lukša, Monika Podoliankaitė, Iglė Vepštaitė, Živilė Strazdaitė-Žielienė, Jaunius Urbonavičius, Elena Servienė
{"title":"Yeast β-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin.","authors":"Juliana Lukša,&nbsp;Monika Podoliankaitė,&nbsp;Iglė Vepštaitė,&nbsp;Živilė Strazdaitė-Žielienė,&nbsp;Jaunius Urbonavičius,&nbsp;Elena Servienė","doi":"10.1128/EC.00287-14","DOIUrl":"https://doi.org/10.1128/EC.00287-14","url":null,"abstract":"<p><p>Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property. </p>","PeriodicalId":11891,"journal":{"name":"Eukaryotic Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/EC.00287-14","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33079229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Role of phosphatidylinositol phosphate signaling in the regulation of the filamentous-growth mitogen-activated protein kinase pathway. 磷脂酰肌醇磷酸信号在丝状生长丝裂原激活蛋白激酶途径中的调节作用。
Eukaryotic Cell Pub Date : 2015-04-01 Epub Date: 2015-02-27 DOI: 10.1128/EC.00013-15
Hema Adhikari, Paul J Cullen
{"title":"Role of phosphatidylinositol phosphate signaling in the regulation of the filamentous-growth mitogen-activated protein kinase pathway.","authors":"Hema Adhikari,&nbsp;Paul J Cullen","doi":"10.1128/EC.00013-15","DOIUrl":"https://doi.org/10.1128/EC.00013-15","url":null,"abstract":"<p><p>Reversible phosphorylation of the phospholipid phosphatidylinositol (PI) is a key event in the determination of organelle identity and an underlying regulatory feature in many biological processes. Here, we investigated the role of PI signaling in the regulation of the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. Lipid kinases that generate phosphatidylinositol 4-phosphate [PI(4)P] at the Golgi (Pik1p) or PI(4,5)P2 at the plasma membrane (PM) (Mss4p and Stt4p) were required for filamentous-growth MAPK pathway signaling. Introduction of a conditional allele of PIK1 (pik1-83) into the filamentous (Σ1278b) background reduced MAPK activity and caused defects in invasive growth and biofilm/mat formation. MAPK regulatory proteins that function at the PM, including Msb2p, Sho1p, and Cdc42p, were mislocalized in the pik1-83 mutant, which may account for the signaling defects of the PI(4)P kinase mutants. Other PI kinases (Fab1p and Vps34p), and combinations of PIP (synaptojanin-type) phosphatases, also influenced the filamentous-growth MAPK pathway. Loss of these proteins caused defects in cell polarity, which may underlie the MAPK signaling defect seen in these mutants. In line with this possibility, disruption of the actin cytoskeleton by latrunculin A (LatA) dampened the filamentous-growth pathway. Various PIP signaling mutants were also defective for axial budding in haploid cells, cell wall construction, or proper regulation of the high-osmolarity glycerol response (HOG) pathway. Altogether, the study extends the roles of PI signaling to a differentiation MAPK pathway and other cellular processes. </p>","PeriodicalId":11891,"journal":{"name":"Eukaryotic Cell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/EC.00013-15","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33090372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信