{"title":"Laser Beam Machining of Aluminum and Aluminum Alloys","authors":"Mangesh V. Pantawane, S. Joshi, N. Dahotre","doi":"10.31399/asm.hb.v02a.a0006532","DOIUrl":"https://doi.org/10.31399/asm.hb.v02a.a0006532","url":null,"abstract":"\u0000 This article focuses on a variety of laser beam machining (LBM) operations of aluminum and its alloys, namely, laser cutting, laser drilling, laser milling, laser turning, laser grooving, laser scribing, laser marking, and laser micromachining. It presents different approaches for carrying out machining operations, laser processing parameters, efficiency and accuracy of the process, and the effect of laser processing parameters on the quality of the machined surface. The article provides an overview of the various conventional (chip forming) and nonconventional machining techniques employed for aluminum-based materials. A comparison of the various aspects of LBM with other non-conventional techniques is also presented. The article also describes the features of LBM techniques employed for aluminum and its alloys for different types of machining.","PeriodicalId":118465,"journal":{"name":"Aluminum Science and Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125311027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aluminum Foams—Processing, Properties, and Applications","authors":"J. Baumeister, D. Lehmhus, J. Weise","doi":"10.31399/asm.hb.v02a.a0006495","DOIUrl":"https://doi.org/10.31399/asm.hb.v02a.a0006495","url":null,"abstract":"\u0000 This article describes manufacturing procedures that produce aluminum foams and have since become industrially important and successful. It discusses the foaming of melts by blowing agents and foaming of melts by gas injection. The article focuses on aluminum foams based on the Foaminal technology, because those foams dominate the technical applications of aluminum foams. It also discusses the mechanical properties of metal foams, such as general compression behavior, elastic behavior, strain-rate sensitivity, tensile behavior, ductility, fatigue, and mechanical damping. The article concludes with information on the applications of highly porous metal structures.","PeriodicalId":118465,"journal":{"name":"Aluminum Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128480446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metallurgy of Heat Treatable Aluminum Alloys","authors":"D. Mackenzie","doi":"10.31399/asm.hb.v02a.a0006509","DOIUrl":"https://doi.org/10.31399/asm.hb.v02a.a0006509","url":null,"abstract":"\u0000 Heat treatment of aluminum alloys frequently refers to the heat treatable aluminum alloys that can be strengthened by solution treatment, quenching, and subsequent hardening. This article introduces the general metallurgy of strengthening aluminum alloys by heat treatment. It discusses various heat treatable alloying elements, such as copper, chromium, iron, magnesium, silicon, zinc, and lithium. The article describes the age-hardening treatments and generalized precipitation sequence for aluminum alloys. It reviews the solution heat treatment in terms of solution heating time and temperature, as well as high-temperature oxidation. The article also discusses quench sensitivity, vacancy loss, grain-boundary precipitates, and quench delay for the heat treatment of aluminum. It concludes with a discussion on the deformation of aluminum alloys prior to aging.","PeriodicalId":118465,"journal":{"name":"Aluminum Science and Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133078412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plating on Aluminum","authors":"J. Runge, C. Werner, S. Lampman","doi":"10.31399/asm.hb.v02a.a0006491","DOIUrl":"https://doi.org/10.31399/asm.hb.v02a.a0006491","url":null,"abstract":"\u0000 Aluminum components are often plated with other metals to mitigate the effects of corrosion and wear, improve application performance, and extend service life. This article discusses some of the more common aluminum plating processes, including electroplating, immersion plating, and electroless plating, and describes various plating materials and the types of applications in which they are used. It provides critical processing details such as temperatures, ratios, ranges, times, and rates. The article explains how to prepare aluminum components for electroplating, discussing surface roughening, anodizing, and immersion procedures along with expected results.","PeriodicalId":118465,"journal":{"name":"Aluminum Science and Technology","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114966284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extrusion and Drawing of Aluminum Alloys","authors":"P. Saha","doi":"10.31399/asm.hb.v02a.a0006534","DOIUrl":"https://doi.org/10.31399/asm.hb.v02a.a0006534","url":null,"abstract":"\u0000 This article describes the direct hot extrusion process and the typical sequence of operations for producing extruded aluminum shapes from soft and medium-grade aluminum alloys, hard alloys, and aluminum-matrix composites. It discusses key process variables, including extrusion speed and exit temperature, and their effect on product quality. The article also provides information on extrusion presses, press dies, and tooling, and addresses quality issues such as surface defects, blistering, and internal cracking. It concludes with a discussion on the drawing of solid section and aluminum tube.","PeriodicalId":118465,"journal":{"name":"Aluminum Science and Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123609576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heat Treatment of Aluminum Alloy Castings","authors":"G. Sigworth","doi":"10.31399/asm.hb.v02a.a0006507","DOIUrl":"https://doi.org/10.31399/asm.hb.v02a.a0006507","url":null,"abstract":"\u0000 The strength of aluminum castings can be improved significantly by heat treatments, which control the size, shape, and distribution of the impurity elements in the casting. This article presents a discussion on the heat treatment of aluminum alloy castings, with a focus on the fundamental technical aspects involved in each process step. The intent is to convey a good understanding of the fundamental aspects of heat treatment. Typical heat treatments of aluminum casting alloys are presented in a table. The article describes the solution heat treatment, quenching, and preaging of Al-Si-Mg alloys, as well as the solution heat treatment and artificial aging of Al-Si-Cu-Mg casting alloys.","PeriodicalId":118465,"journal":{"name":"Aluminum Science and Technology","volume":"109 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124075831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sealing of the Anodized Aluminum Coating","authors":"Pinakin K. Patel, Tej Patel","doi":"10.31399/asm.hb.v02a.a0006499","DOIUrl":"https://doi.org/10.31399/asm.hb.v02a.a0006499","url":null,"abstract":"\u0000 The sealing of the anodized aluminum is a critical process in achieving the durability and extended functionality of anodizing. This article discusses the different methods for sealing the anodic coatings produced by using sulfuric acid, namely, hot deionized water, hot nickel acetate, midtemperature, cold, and dichromate sealing. It reviews the factors that affect seal quality: immersion time, chemistry concentration, temperature, pH, water quality, coating thickness, and contaminants/dye bleeding. The article describes the various tests that are used for determining the quality of the seal, namely, salt spray, modified dye stain, acid dissolution, impedance, copper accelerated acetic acid salt spray, high-alkaline resistance, SO2 fog, and clorox tests.","PeriodicalId":118465,"journal":{"name":"Aluminum Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129935803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Laser Stir Welding","authors":"R. Martukanitz, I. Stol","doi":"10.31399/asm.hb.v02a.a0006490","DOIUrl":"https://doi.org/10.31399/asm.hb.v02a.a0006490","url":null,"abstract":"\u0000 Although laser stir welding (LSW) is applied to various metallic systems, it is especially appropriate to laser beam welding (LBW) of aluminum, because liquid aluminum possesses significantly less surface tension and viscosity than most common metal alloys, which results in greater fluidity of the molten pool. This article schematically illustrates the keyhole instability in LBW and describes the process details of LSW. Representative macrographs of butt, lap, and fillet welds produced using the LBW and LSW processes are presented. The article discusses the laser welding technologies having a large impact on the ability to apply LSW in production. It concludes with information on the industrial applications of LSW.","PeriodicalId":118465,"journal":{"name":"Aluminum Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131319653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wrought Aluminum Processes and Products","authors":"J. Weritz, S. Lampman","doi":"10.31399/asm.hb.v02a.a0006518","DOIUrl":"https://doi.org/10.31399/asm.hb.v02a.a0006518","url":null,"abstract":"\u0000 This article introduces the basic characteristics, processes, and product forms associated with the five major categories of aluminum wrought products, namely, flat-rolled products (sheet, plate, and foil); rod, bar, and wire; tubular products; profiles; and forgings. It summarizes the various product forms in which commonly used wrought aluminum alloys are available. The article also provides design guidelines for aluminum extrusions and discusses various forming methods.","PeriodicalId":118465,"journal":{"name":"Aluminum Science and Technology","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125401614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}