EndocrinologyPub Date : 2025-03-24DOI: 10.1210/endocr/bqaf049
Rebecka Amodei, Sonnet S Jonker, Evelyn Lazen, Casey C Nestor, Charles T Estill, Charles E Roselli
{"title":"KNDy Neurons and the Control of the Gonadotropic Axis in the Midgestation Fetal Sheep.","authors":"Rebecka Amodei, Sonnet S Jonker, Evelyn Lazen, Casey C Nestor, Charles T Estill, Charles E Roselli","doi":"10.1210/endocr/bqaf049","DOIUrl":"10.1210/endocr/bqaf049","url":null,"abstract":"<p><p>KNDy neurons, located in the hypothalamic arcuate nucleus, coexpress kisspeptin (Kiss), neurokinin B, and dynorphin and play a crucial role in regulating GnRH/LH secretion in midgestation sheep fetuses. We hypothesize that KNDy-GnRH signaling is established during midgestation, with negative feedback acting through KNDy neurons regulating testosterone levels needed for brain masculinization in male fetuses. We used immunofluorescence histochemistry to assess the effect of chemical castration with the GnRH antagonist degarelix on arcuate KNDy neurons in fetal sheep. Fluorescent in situ hybridization demonstrated the presence of steroid receptors in untreated midgestation fetal kisspeptin neurons. Additionally, unanesthetized cannulated midgestation fetal sheep were used to examine the effects of KNDy peptides on LH secretion and characterize receptor specificity. Treatment of male lamb fetuses with degarelix on day 62 of gestation resulted in significantly decreased plasma LH and testosterone concentrations (P < .05), accompanied by a significant increase in arcuate Kiss neurons (P < .05). In unanesthetized cannulated fetuses, bolus administration of KP-10 (a Kiss receptor agonist) and senktide (NK3 receptor agonist) elicited robust LH release within 15 minutes. Pretreatment with the NK3 receptor antagonist SB222200 blocked the LH response to senktide, whereas P271 (Kiss receptor antagonist) did not affect basal LH or block the LH response to KP-10. Blocking κ-opiate receptor with PF4455242 significantly increased LH release. These results support the hypothesis that KNDy neurons regulate GnRH and gonadotropin secretion in midgestation sheep fetuses, acting as targets for negative feedback to maintain a stable androgen environment crucial for brain masculinization.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143572571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-03-24DOI: 10.1210/endocr/bqaf046
Alice Batistuzzo, Xiaohan Zhang, Barbara M L C Bocco, Elizabeth A McAninch, Federico Salas-Lucia, Miriam O Ribeiro, Peter Arvan, Antonio C Bianco, Tatiana L Fonseca
{"title":"FVB But Not B6 Mice Carrying the Thr92Ala-Dio2 Polymorphism Have Impaired Thyroid Hormonogenesis and Goiter.","authors":"Alice Batistuzzo, Xiaohan Zhang, Barbara M L C Bocco, Elizabeth A McAninch, Federico Salas-Lucia, Miriam O Ribeiro, Peter Arvan, Antonio C Bianco, Tatiana L Fonseca","doi":"10.1210/endocr/bqaf046","DOIUrl":"10.1210/endocr/bqaf046","url":null,"abstract":"<p><p>The Thr92Ala-Dio2 polymorphism is prevalent worldwide, with about 50% of the population carrying at least 1 allele. The Ala92-Dio2 allele encodes a less active type 2 deiodinase enzyme and has been associated with neurodegenerative diseases, hypertension, and insulin resistance. To understand why its phenotypic effects are variable across different populations, in this study we examined the impact of genetic background on the Thr92Ala-Dio2 polymorphism. We focused on the thyroid gland of 2 genetically distant mouse strains, the C57BL/6J (B6) and the FVB/N (FVB). While the B6-Ala92-Dio2 mice have no meaningful phenotype, the FVB-Ala92-Dio2 exhibit a goiter (about 2.3-fold heavier thyroid) with an about 1.7-fold enlarged thyroid follicular area and impaired hormonogenesis with reduced thyroglobulin content of T4 and T3, 35% to 50% lower serum T4, and about 3-fold elevated serum TSH levels. Notably, the FVB-Ala92-Dio2 thyroid glands showed transcriptional evidence of endoplasmic reticulum stress, unfolded protein response, autophagy, and apoptosis. Female FVB-Ala92-Dio2 mice exhibited a more pronounced thyroid phenotype than males. These findings underscore the critical role of genetic background in modulating the phenotype outcomes of the Thr92Ala-Dio2 polymorphism and highlight its potential implications for understanding variable disease susceptibility in human populations.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932088/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143630071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-03-24DOI: 10.1210/endocr/bqaf051
Wenyuan He, Neruja Loganathan, Denise D Belsham
{"title":"IGF1 Signaling Regulates Neuropeptide Expression in Hypothalamic Neurons Under Physiological and Pathological Conditions.","authors":"Wenyuan He, Neruja Loganathan, Denise D Belsham","doi":"10.1210/endocr/bqaf051","DOIUrl":"10.1210/endocr/bqaf051","url":null,"abstract":"<p><p>Insulin-like growth factor 1 (IGF1) plays a critical role in metabolism and aging, but its role in the brain remains unclear. This study examined whether hypothalamic neurons respond to IGF1 and how its actions are modulated. RT-qPCR and single-cell RNA sequencing indicated that Igf1r mRNA is expressed in neuropeptide Y/Agouti-related peptide (NPY/AgRP) neurons but has higher expression in pro-opiomelanocortin (POMC) neurons. IGF1 binding proteins Igfbp3 and Igfbp5 were significantly expressed, whereby Igfbp5 levels were modulated by fasting, nutrient availability, and circadian rhythms, implying that IGF1 signaling can be controlled by multiple mechanisms. In mouse and human models, IGF1 regulated Agrp, Npy, Pomc, Cartpt, Spx, Gal, and Fam237b expression, producing an overall anorexigenic profile. Hyperinsulinemia induced IGF1 resistance, accompanied by reduced IGF1R protein, as well as Igf1r and Irs2 mRNA expression via over-activation of phosphoinositide 3-kinase/forkhead box O1 (PI3K-FOXO1) signaling. Thus, hypothalamic neurons respond to IGF1 under physiological conditions, and hyperinsulinemia is a novel mechanism that drives cellular IGF1 resistance.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949690/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143656543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-03-20DOI: 10.1210/endocr/bqaf057
Chrystian D Phillips, R Anthony DeFazio, Suzanne M Moenter
{"title":"Sex and time of day alter the interactions between hypothalamic glia and the neural circuits controlling reproduction.","authors":"Chrystian D Phillips, R Anthony DeFazio, Suzanne M Moenter","doi":"10.1210/endocr/bqaf057","DOIUrl":"https://doi.org/10.1210/endocr/bqaf057","url":null,"abstract":"<p><p>An upstream network, including glia and arcuate nucleus (ARC) kisspeptin neurons, controls hormone secretion from preoptic area (POA) gonadotropin-releasing hormone (GnRH) neurons, which form the final common pathway for the central control of fertility. In males, chemogenetic activation of Gq-mediated signaling in POA glia activated GnRH neurons and downstream luteinizing hormone (LH) release, while chemogenetic activation of ARC glia had no effect on ARC kisspeptin neurons. We characterized sex differences and time-of-day effects in these critical circuits to understand their effects on reproduction. Chemogenetic activation of glial fibrillary acidic protein (GFAP)-expressing cells increased intracellular calcium concentrations regardless of sex, brain region, or time of day. Activation of POA glia or treatment with the gliotransmitter analog dimethyl prostaglandin E2 (dmPGE2) increased GnRH neuron firing rate, and these responses were dependent upon sex and time of day. In contrast, ARC kisspeptin neuron firing rate was unresponsive to ARC glia activation or dmPGE2 regardless of sex or time of day. POA glial activation increased LH levels in males and females but the response in males was more rapid. ARC glia activation had no effect on LH in females and the response in males was delayed compared to POA glia activation. A similar LH response persisted after ARC kisspeptin neuron ablation, suggesting it is not mediated by those neurons. GnRH neurons rather than arcuate kisspeptin neurons are thus the main target of glial regulation of reproductive neuroendocrine output and this regulation is dependent on sex and time of day.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143662898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-03-19DOI: 10.1210/endocr/bqaf052
Alina M Hamilton, Vinod K Srivastava, Jill K Hiney, William L Dees, Robert K Dearth
{"title":"Manganese-induced precocious puberty alters mammary epithelial cell proliferation in female rats.","authors":"Alina M Hamilton, Vinod K Srivastava, Jill K Hiney, William L Dees, Robert K Dearth","doi":"10.1210/endocr/bqaf052","DOIUrl":"10.1210/endocr/bqaf052","url":null,"abstract":"<p><p>Precocious puberty (PP) is an established breast cancer risk factor. In the normal mammary gland, hormone receptor-positive (HR+) cells rarely proliferate. In breast cancer, proliferating epithelial cells are often HR+. It is not known if PP can modify this population of proliferating HR+ cells. Previously, we established a manganese-induced precocious puberty (MnPP) model to study the effects of PP on mammary gland development in female rats. Herein, we characterized the distribution of HR+ proliferating mammary epithelial cells in prepubertal and adult rodents, in association with precocious puberty. Female rats were exposed daily to 10mg/kg manganese chloride (MnCl2) or saline (control) from post-natal day (PND) 12 to PND 30 Mammary glands were collected on PNDs 30 and 120, processed for western blot analysis and double immunofluorescence staining for proliferating cell nuclear antigen (PCNA) and progesterone receptor (PR) or estrogen receptor (ER). MnPP increased the percentage of HR+ mammary epithelial cells co-expressing PCNA relative to normally developed controls at PND 30. This correlated with increased expression of ER regulated proteins in MnPP mammary glands relative to controls at PND 30, including FOXA1, AREG and c-Myc. Conversely, at PND 120 relative to PND 30, proliferating HR+ cells remained chronically elevated in MnPP mammary glands at PND 120, which coincided with decreased expression of cell cycle regulator, p27, and increased expression of PR-regulated markers, EREG and sp1. Collectively, these results suggest early puberty alters steroidal regulation of classic proliferative mechanisms in the prepubertal gland with increased prevalence of high-risk proliferating HR+ cells.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143656544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-03-06DOI: 10.1210/endocr/bqaf047
Amanda Helen Winningham, Eve Camper Rhoads, Michelle Lynn Brinkmeier, Sebastian Alexis Vishnopolska, Jacob Otto Kitzman, Sally Ann Camper, María Inés Pérez Millán
{"title":"Role of PROP1 in postnatal pituitary gland maturation.","authors":"Amanda Helen Winningham, Eve Camper Rhoads, Michelle Lynn Brinkmeier, Sebastian Alexis Vishnopolska, Jacob Otto Kitzman, Sally Ann Camper, María Inés Pérez Millán","doi":"10.1210/endocr/bqaf047","DOIUrl":"https://doi.org/10.1210/endocr/bqaf047","url":null,"abstract":"<p><p>Mutations in the pituitary-specific transcription factor PROP1 are the most common, known cause of hypopituitarism in humans. Prop1 is the first pituitary-specific gene in the hierarchy of transcription factors that regulate pituitary development. It is essential for regulating the transition of pituitary stem cells to hormone-producing cells in an epithelial to mesenchymal-like transition process. It is also critical for activation of the lineage specific transcription factor POU1F1 in early organogenesis. Prop1 deficient mice have pituitary dysmorphology and lack the cells that produce growth hormone (GH), thyroid stimulating hormone (TSH), and prolactin (PRL). Prop1 is expressed in stem cells postnatally, but it is not known whether postnatal expression is necessary for completion of pituitary gland growth or organ maintenance. We tested whether PROP1 has a role in postnatal pituitary development by generating a conditional allele and deleting a crucial exon after birth. We determined that postnatal expression of Prop1 is important for appropriate expansion of the POU1F1 lineage and for robust expression of TSH, GH, and PRL in the early postnatal period. However, by 2 weeks of age, compensatory proliferation of committed POU1F1-expressing cells, but not SOX2-expressing stem cells, have normalized pituitary function. Thus, PROP1 appears to be dispensable after birth in mice.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143572574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-03-04DOI: 10.1210/endocr/bqaf041
Andrew C Pearson, Jessica S Miller, Hannah J Jensen, Ketan Shrestha, Thomas E Curry, Diane M Duffy
{"title":"Neurotensin Regulates Primate Ovulation Via Multiple Neurotensin Receptors.","authors":"Andrew C Pearson, Jessica S Miller, Hannah J Jensen, Ketan Shrestha, Thomas E Curry, Diane M Duffy","doi":"10.1210/endocr/bqaf041","DOIUrl":"https://doi.org/10.1210/endocr/bqaf041","url":null,"abstract":"<p><p>Neurotensin (NTS), a small neuropeptide, was recently established as a key paracrine mediator of ovulation. NTS mRNA is highly expressed by granulosa cells in response to the luteinizing hormone (LH) surge, and multiple NTS receptors are expressed by cells of the ovulatory follicle. To identify the role of NTS receptors NTSR1 and SORT1 in ovulation in vivo, the dominant follicle of cynomolgus macaques (Macaca fascicularis) was injected with either vehicle control, the general NTS receptor antagonist SR142948, the NTSR1-selective antagonist SR48692, or the SORT1-selective antagonist AF38469. Human chorionic gonadotropin (hCG) was then administered to initiate ovulatory events. Ovulation was successful in all control-injected follicles. Rupture sites were smaller or absent after injection with NTS receptor antagonists. Histological analysis of follicles injected with SR142948, SR48692, or AF38469 revealed increased red blood cell extravasation and pooling in the follicle antrum when compared to controls. NTS receptor antagonist-injected follicles also showed dysregulated capillary formation and reduced luteinization of the granulosa cell layer. Prior in vitro studies showed that NTS significantly increased macaque ovarian microvascular endothelial cell (mOMEC) migration, while decreasing monolayer permeability. The NSTR1 antagonist SR48692 or siRNA knockdown of NTSR1 abrogated the ability of NTS to stimulate mOMEC migration and to decrease monolayer permeability. Similar experiments performed with the SORT1 antagonist AF38469 or siRNA knockdown of SORT1 also resulted in ablation of NTS-mediated changes in migration and permeability after SORT1 signaling was impaired. Together, these data implicate both NTSR1 and SORT1 as critical mediators of NTS-stimulated ovulation, luteinization, and angiogenesis of the ovulatory follicle.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143556244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-02-27DOI: 10.1210/endocr/bqaf039
Jason P Breves
{"title":"TRPA1 Activation Blunts the Somatotropic Axis in Ectothermic Fish.","authors":"Jason P Breves","doi":"10.1210/endocr/bqaf039","DOIUrl":"10.1210/endocr/bqaf039","url":null,"abstract":"","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143491287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-02-27DOI: 10.1210/endocr/bqaf033
Loïc Kacimi, Vincent Prevot
{"title":"GnRH and Cognition.","authors":"Loïc Kacimi, Vincent Prevot","doi":"10.1210/endocr/bqaf033","DOIUrl":"10.1210/endocr/bqaf033","url":null,"abstract":"<p><p>GnRH is traditionally recognized as the central regulator of reproduction through its pulsatile secretion, which governs the hypothalamic-pituitary-gonadal axis. However, recent evidence has highlighted its broader role in brain development and function, including in cognitive and higher intellectual processes. GnRH production follows distinct phases, from its early activation during minipuberty-the first postnatal activation of GnRH neurons during the infantile period-, its reactivation and stabilization starting at puberty, and its eventual decline with age and the loss of gonadal steroid feedback. This evolution depends on the establishment, maturation and activation of GnRH neurons, a complex process regulated by the cellular and molecular environment of these neurons, including multiple neuronal and glial types as well as a minipubertal \"switch\" in gene expression, the perturbation of which may have long-term or delayed consequences for both reproductive and cognitive function. The cognitive role of GnRH may be related to its recently revealed involvement in maintaining myelination and synaptic plasticity, whereas disruptions in its finely tuned rhythmic secretion, either age-related or pathological, are associated with cognitive decline and neurodegenerative disorders. Restoring physiological GnRH levels and pulsatility can reverse age-related cognitive decline and improve sensory functions even in adulthood, suggesting a mobilization of the \"cognitive reserve\" in both animal models and human patients. This review highlights recent advances in our understanding of the GnRH system and the therapeutic potential of pulsatile GnRH therapy to mitigate age-related cognitive decline and neurodegenerative processes.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143491285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EndocrinologyPub Date : 2025-02-27DOI: 10.1210/endocr/bqaf028
Elisabet Jerlhag
{"title":"GLP-1 Receptor Agonists: Promising Therapeutic Targets for Alcohol Use Disorder.","authors":"Elisabet Jerlhag","doi":"10.1210/endocr/bqaf028","DOIUrl":"10.1210/endocr/bqaf028","url":null,"abstract":"<p><p>Glucagon-like peptide-1 (GLP-1) is abundant in the circulation, and it is well-known to regulate glucose homeostasis, feeding, and body weight. GLP-1 receptor agonists are therefore approved for treating type 2 diabetes and obesity. However, more recent research has demonstrated that GLP-1 acts within the brain to modulate reward responses, thereby highlighting GLP-1 as a potential target for addiction. Specifically, preclinical studies demonstrated that GLP-1 receptor agonists decrease alcohol intake, reduce the motivation to consume alcohol, and prevent relapse drinking by potentially lowering alcohol-induced reward. These preclinical results have been confirmed and extended in human studies in which GLP-1 receptor agonists reduce alcohol intake in patients with alcohol use disorder (AUD) who have a regular weight or comorbidity of obesity or type 2 diabetes. On a similar note, genetic variations in genes encoding for the GLP-1 receptor are associated with AUD and heavy drinking. The central mechanisms by which GLP-1 regulates alcohol-related behaviors are not fully defined, but may involve areas central to reward as well as regions projecting to these reward areas, such as the nucleus tractus solitarius of the brainstem. Together, existing preclinical and clinical data suggest that GLP-1 is involved in the AUD process and implies its role as a tentative treatment for AUD.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879929/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143467146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}