{"title":"The Impact of Long-Term (4 Months) Exposure to Low pH and Elevated Temperature on the Growth Rate of Gold Mollies’ (Poecilia Sphenops) Larvae","authors":"Rostern N. Tembo","doi":"10.5539/ep.v13n2p1","DOIUrl":"https://doi.org/10.5539/ep.v13n2p1","url":null,"abstract":"Researchers in the marine ecosystem have documented the significant impacts that anthropogenic ocean acidification has on marine organisms. These include olfactory abilities in fish, impaired behavioral as well as physiological changes, including anti-predatory response leading to consequences in population dynamics and community structure. In this research, we endeavored to investigate and compare the growth rate of the gold mollies (Poecialia sphenops) larvae under a low pH of 5 water temperature of 28 O C, and a pH of 6.9 at a water temperature of 26 O conditions. The mollies larvae were weighed for four months (August, September, October, and November) and the data collected was analyzed using the Statistical Package for Social Sciences (IBM SPSS). The analysis was a multivariate test for a more complete examination of data by looking at independent variables and their relationship to one another. There was no statistically significant difference in the growth rate in August (p-value 0.969) and September (p-value 0.286) between the larvae in aquarium A (experimental) and those in aquarium D (control) at the beginning of the experiment. But there was a statistically significant difference in the third (3) month (October) P-value = 0.007 and in the fourth month (4) (November) P-value = 0.004. The low pH of 5 impacted the growth rate of the Poecilia sphenops larvae while those in the control aquarium pH of 6.9 seemed to have not been affected and grew well.","PeriodicalId":11724,"journal":{"name":"Environment and Pollution","volume":"79 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141647453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reviewer acknowledgements for Environment and Pollution, Vol. 13, No. 1","authors":"Albert John","doi":"10.5539/ep.v13n1p52","DOIUrl":"https://doi.org/10.5539/ep.v13n1p52","url":null,"abstract":"Reviewer acknowledgements for Environment and Pollution, Vol. 13, No. 1, 2024.","PeriodicalId":11724,"journal":{"name":"Environment and Pollution","volume":" 35","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140214249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Will Climate Change and Ocean Acidification Lead to the Massive Death of Marine Organisms?","authors":"Rostern N. Tembo","doi":"10.5539/ep.v13n1p41","DOIUrl":"https://doi.org/10.5539/ep.v13n1p41","url":null,"abstract":"Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. More specifically, what stands to be understood from this review is an understanding of the effects of ocean acidification and whether marine organisms have sufficient physiological plasticity to adapt to the changes in their environment as pCO2 concentration continues to rise. An experiment assessing the impact of ocean acidification on a given species, community, or ecosystem should include realistic changes for all environmental drivers (CO2, temperature, salinity, food concentrations, light availability), and be long-term (i.e., several years) to allow for natural variability and multiple generations of each species under consideration. Single experimental approaches on single organisms often do not capture the true level of complexity of in situ marine environments, and multi-disciplinary approaches involving technological advancements and development are critically needed before a correct determination is made on the mortality of marine organisms.","PeriodicalId":11724,"journal":{"name":"Environment and Pollution","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139879621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Will Climate Change and Ocean Acidification Lead to the Massive Death of Marine Organisms?","authors":"Rostern N. Tembo","doi":"10.5539/ep.v13n1p41","DOIUrl":"https://doi.org/10.5539/ep.v13n1p41","url":null,"abstract":"Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. More specifically, what stands to be understood from this review is an understanding of the effects of ocean acidification and whether marine organisms have sufficient physiological plasticity to adapt to the changes in their environment as pCO2 concentration continues to rise. An experiment assessing the impact of ocean acidification on a given species, community, or ecosystem should include realistic changes for all environmental drivers (CO2, temperature, salinity, food concentrations, light availability), and be long-term (i.e., several years) to allow for natural variability and multiple generations of each species under consideration. Single experimental approaches on single organisms often do not capture the true level of complexity of in situ marine environments, and multi-disciplinary approaches involving technological advancements and development are critically needed before a correct determination is made on the mortality of marine organisms.","PeriodicalId":11724,"journal":{"name":"Environment and Pollution","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139819693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reviewer acknowledgements for Environment and Pollution, Vol. 12, No. 2","authors":"Albert John","doi":"10.5539/ep.v12n2p20","DOIUrl":"https://doi.org/10.5539/ep.v12n2p20","url":null,"abstract":"Reviewer acknowledgements for Environment and Pollution, Vol. 12, No. 2, 2023.","PeriodicalId":11724,"journal":{"name":"Environment and Pollution","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135387170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-Point Sources (Septic Tanks) of Surface Water Nutrient Pollution: A Review and a Study of Taylor Creek, Okeechobee County, Florida","authors":"J. Louda, J. F. Hayford","doi":"10.5539/ep.v12n2p1","DOIUrl":"https://doi.org/10.5539/ep.v12n2p1","url":null,"abstract":"This study investigated the impact of high-density septic systems (aka Onsite Sewerage and Disposal Systems, OSTDS) along the canals located in the communities of the lower Taylor Creek area on water quality at the northern periphery of Lake Okeechobee. Using sucralose as an anthropogenic tracer, we investigated the septic derived non-point sourcing of nutrients which feed harmful algal (cyanobacterial) blooms (HABs) in Lake Okeechobee and adjacent waters. \u0000 \u0000The subdivisions investigated were Treasure Island (TI) and Taylor Creek Isles (TCI) located to the east and west of Taylor Creek. TI homes are all on septic tanks whereas TCI is serviced by a municipal vacuum sewerage system. \u0000 \u0000TI canals had 5.3 times the mean concentration of sucralose relative to TCI canals. On a yearly basis, the Treasure Island sites away from Taylor Creek had 2.25 times the total phosphorus and 1.20 times the total nitrogen compared to the Taylor Creek isles sites. An extensive literature review of non-point pollution is included.","PeriodicalId":11724,"journal":{"name":"Environment and Pollution","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86139221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reviewer acknowledgements for Environment and Pollution, Vol. 12, No. 1","authors":"Albert John","doi":"10.5539/ep.v12n1p53","DOIUrl":"https://doi.org/10.5539/ep.v12n1p53","url":null,"abstract":"Reviewer acknowledgements for Environment and Pollution, Vol. 12, No. 1, 2023.","PeriodicalId":11724,"journal":{"name":"Environment and Pollution","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134952633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Possible Future Risks of Pollution Consequent to the Expansion of Oil and Gas Operations in Qatar","authors":"R. Al-Thani, B. T. Yasseen","doi":"10.5539/ep.v12n1p12","DOIUrl":"https://doi.org/10.5539/ep.v12n1p12","url":null,"abstract":"The air, water, and lands of the Arabian Gulf countries are exposed to contamination involving organic and inorganic components resulting from industrial energy sector activities. In Qatar, marine life and air are the primary elements of the ecosystem that pollution has negatively affected since the discovery and exportation of oil and gas. For example, the mean concentration of PM2.5 reached 105 µg/m3 in 2016. This poor air quality has been attributed to several factors: dust storms, vehicle emissions, and industrial emissions. Marine life around the peninsula of Qatar has been threatened by many factors, including discharge of desalinated seawater, oil and gas activities, and the impact of climate change. Studies conducted after multiple major events showed that levels of various types of pollutants were at acceptable levels. Some areas in the Arabian Gulf, such as the coasts of Saudi Arabia and Bahrain, are still considered chronically polluted and need continual monitoring in the long term. This review discusses the pollution status on the Qatari coastlines and the reasons behind the persistence of current levels of pollution in Arabian Gulf water. The role of microorganisms (bacteria, algae, and fungi) in a biological approach for environmental manipulation of pollution problems is discussed. The agricultural lands in Qatar are possible sites of pollution due to the potential expansion of the energy, industry, and construction sectors in the future. Currently, industrial wastewater is pumped deep into the ground, and seawater is intruding into the main-land, which is causing significant contamination of soils used for the cultivation of various crops. Possible measures are reported, and practical solutions to future pollution risks are discussed.","PeriodicalId":11724,"journal":{"name":"Environment and Pollution","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73926439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gildas David Farid Adamon, M. A. Konnon, Merscial Raymond, Rodolphe Ndeji, A. Agonman, Adonai Gbaguidi, Togon Clotilde Guidi, L. Fagbemi
{"title":"Estimation of Water Hyacinth Using Computer Vision","authors":"Gildas David Farid Adamon, M. A. Konnon, Merscial Raymond, Rodolphe Ndeji, A. Agonman, Adonai Gbaguidi, Togon Clotilde Guidi, L. Fagbemi","doi":"10.5539/ep.v12n1p1","DOIUrl":"https://doi.org/10.5539/ep.v12n1p1","url":null,"abstract":"The different controls of water hyacinth, an invasive species of tropical and subtropical environ-ments, have demonstrated some limitations requiring additional monitoring tasks to maintain the ecological balance. Therefore, quantifying and valuing this aquatic biomass becomes a sustainable management alternative. However, the water hyacinth estimation remains a challenging task in developing countries with regard to the used methods: empirical relationships between yield and production indices calculated experimentally, structural parameters measured or calculated through specific experiments (not dynamic), etc. These methods lose precision depending on the type of plant, cultural methods and practices and the seasons. Then, it becomes urgent to develop a dynamic estimation method with a proven track record of reliability despite the inconsistency of the factors mentioned above. This article contributes to the improvement of aquatic biomass estimation by proposing a Computer Vision based solution for estimating fresh mass of water hyacinth. To achieve this goal, the morphology of the species is assessed and an XML classifier is developed. This model is then implemented in a mobile app facilitating its end use. The proposed algorithm demonstrated a mean average precision of 96.89%. Considering the recorded level of accurateness, the developed method can be used to estimate different types of biomass.","PeriodicalId":11724,"journal":{"name":"Environment and Pollution","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85287198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Badawy, R. El-Motaium, M. Hossain, H. Abdel-Lattif, H. Ghorab, M. El-Sayed
{"title":"Health Risk Assessment and Nickel Content in Soils, Rice (Oryza Sativa L.) and Wheat (Triticum Aestivum L.) Grown in Damietta Governorate, Egypt","authors":"S. Badawy, R. El-Motaium, M. Hossain, H. Abdel-Lattif, H. Ghorab, M. El-Sayed","doi":"10.5539/ep.v11n2p1","DOIUrl":"https://doi.org/10.5539/ep.v11n2p1","url":null,"abstract":"Nickel (Ni) concentration in soils is highly depended on the parent materials and the types of pollutant sources that plays a beneficial role in plant growth however; at high concentration it may cause toxicity for plants and creating hazards to animals and human. Therefore, this study aimed to estimate the levels of Ni in soils, straw and grain of rice and wheat plants grown in the soils contaminated with Ni and evaluate its effect on human health. In the surface soil layers the total (31.4 ±8.02 mg kg-1) and available Ni concentration (3.10 ±0.91 mg kg-1) are slightly higher by 1.25 ±0.14 and 1.24 ±0.25 fold respectively, than the subsurface layers. Available Ni increased linearly with increasing Ni in soil (r = 0.91). A significant positive correlation was found between available Ni and soil OM content (r = 0.89), while a significant negative correlation was observed for soil CaCO3 percent (r = - 0.72) and soil pH (r = - 0.90). Rice Ni content of the straw (2.1 ±0.32 mg kg-1) and grains (0.44 ±0.07 mg kg-1) were significantly correlated with soil total Ni (r = 0.89 and 0.86) and available Ni (r = 0.84 and 0.74), respectively. Wheat Ni content of straw (1.68 ±0.28 mg kg-1) and grains (0.28 ±0.04 mg kg-1) were significantly correlated with soil total Ni (r = 0.87 and 0.81) and available Ni (r = 0.84 and 0.85), respectively. By increasing straw Ni content grains increased (r = 0.89 for rice and r = 0.95 for wheat). Grains of rice and wheat exhibited lower Ni concentration than that of the straw (20.9% ± 1.64 and 16.7% ± 1.04, respectively). According to FAO/WHO rice and wheat grains contain normal Ni concentration and no evidence of possible potential human health risk with grains consumption.","PeriodicalId":11724,"journal":{"name":"Environment and Pollution","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89198780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}