{"title":"COMPARATIVE ANALYSIS OF THE EFFICIENCY OF WATER AND WATER-AMINE ABSORPTION PROCESSES FOR EXTRACTING CO2 FROM BIOGAS","authors":"Yu.V. Ivanov, H. Zhuk, L. Onopa, S.P. Krushnevych","doi":"10.33070/etars.4.2021.02","DOIUrl":"https://doi.org/10.33070/etars.4.2021.02","url":null,"abstract":"The production of biomethane from biogas energy costsfor the most widely used amine and water processes for extracting carbon dioxide from biogas were analyzed using computer simulation. Combined water-amine absorption method of biogas purification from CO2 wasincluded in the comparative analysis. \u0000For the CO2 content of the biogas from 32 to 42 %, the specific energy costs when using water absorption to extract carbon dioxide from biogas are, on average, in ~ 2.5 times lower than amine absorption, but the loss of CH4 by water absorption was 7.1–7.6 % due to its watersolubility with practically zero CH4 loss when using amine absorption and insignificant loss (0.17–2.8 %) using water-amine technology. \u0000Using preliminary water absorption of CO2 saved CH4 can compensate the power consumption of the biogas compressor or the heatcosts of saturated amine absorbent regenerating. This will allowto reduce energy consumption to almost equal to water absorptionone. The results of simulation of carbon dioxide extraction from biogas can be used to optimize technological absorption schemes for the production of biomethane — an analogueof natural gas. Bibl. 13, Fig. 5, Tab. 6.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87363534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"STATE AND PROSPECTS OF THERMAL POWER GENERATION IN THE CONDITIONS OF UKRAINE’S COURSE ON CARBON-FREE ENERGY","authors":"M. Cherniavskyi","doi":"10.33070/etars.4.2021.01","DOIUrl":"https://doi.org/10.33070/etars.4.2021.01","url":null,"abstract":"The structure of electricity cost formation for consumers, including depending on the cost of TPP generation, «green» energy and other sources, is investigated, and the main conditions of the efficient regulatory function fulfillment in the power system by thermal power generation in the conditions of Ukraine's course on carbon-free energy are formulated. It is shown that excessive electricity losses in networks and, especially, accelerated increase of the share of «green» generation, much more expensive than nuclear, hydro and thermal, mainly contribute to the growth of electricity costs for non-household consumers and the need to raise tariffs for the population. This accelerated increase directly contradicts the Paris Climate Agreement, according to which plans to reduce Ukraine’s greenhouse gas emissions must be developed taking into account available energy resources and without harming its own economy. The dependences of the specific fuel consumption on the average load and the frequency of start-stops of units are found and it is shown that the increased specific fuel consumption on coal TPPs is an inevitable payment for their use as regulating capacities of UES of Ukraine. In this case, the higher the proportion of «green» generation and a smaller proportion of generating thermal power plants, especially increasing specific fuel consumption. It is proved that in the conditions of growth of the share of «green» generation in Ukraine the share of production of pulverized coal thermal power plants should be kept at the level of not less than 30 % of the total electricity generation. It is substantiated that a necessary condition for coal generation to perform a proper regulatory role in the power system is to introduce both environmental and technical measures, namely — reducing the suction of cold air to the furnace and other boiler elements, restoring condensers and cooling systems, etc. An important factor in reducing the average level of specific fuel consumption is also the reduction of coal burn-out at thermal power plants, where it still remains significant, due to the transfer of power units to the combustion of bituminous coal concentrate. Bibl. 12, Fig. 5, Tab. 5.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84909476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"OBTAINING AND PROPERTIES OF NANOSCALE SOLID-STATE HEAT STORAGE WITH CARNAUBA WAX","authors":"S. Brichka","doi":"10.33070/etars.4.2021.04","DOIUrl":"https://doi.org/10.33070/etars.4.2021.04","url":null,"abstract":"Latent thermal energy storage using phase change materials has attracted interest in the use of solar and other types of energy due to their ability to provide high density lateral energy storage. Materials with a latent heat of storage have become attractive for their use in many branches of human activity. However, the materials use is often limited by problems of low thermal conductivity, the transition from a solid to a molten state causes difficulties in storing materials in a container, and special heat exchangers are needed to increase the energy cost. The solution to the above problems may be to create solid-state, form-stable heat storage elements. In this work, a number of shape-stable materials with a phase transition were obtained from melts by mixing halloysite nanotubes with carnauba wax in order to improve the heat accumulation characteristics. Halloysite nanotubes were mixed at elevated temperatures with carnauba melted wax and rapidly cooled to prevent the nanotubes sedimentation. As a result, a series of solid wax/nanotube samples were prepared with weight ratios of 70/30, 60/40 and 50/50. Pure wax showed a accumulation heat of the solid-to-liquid phase transition of 189.09 J/g. Carnauba wax has a latent heat greater by about 25 % compared to paraffin. Composite materials had significantly lower latent heat, respectively, 99.39 J/g for 70/30, 90.25 J/g for 60/40, and 81.26 J/g for 50/50 samples. Elemental mapping of the nanomaterial revealed a nanotubes uniform distribution in the wax. According to the data of X-ray analysis, as a result of the composite materials preparation, the components did not form new crystalline phases, but they were physical mixtures. When heated, the components did not chemically interact with each other, which is useful for the accumulation of thermal energy by materials. Analysis of the IR spectra of the samples confirmed the change in the absorption bands of functional hydroxyl groups at 3696 sm–1 (Al–O–H) and 3621 sm–1 (Si–O–H). In primary nanotubes, the intensities ratio of silanol to aluminol groups is greater than unity, while in the composite it is already less than this value. This manifestation can be explained by the fact that, during the wax melting, the interaction of wax molecules on the outer surface of the nanotubes occurs. Bibl. 16, Fig. 5.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91496826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"THERMOHYDRAULIC DISTRIBUTION IN TWISTED MICRO HEAT EXCHANGERS MOUNTED IN ANNULAR CHANNELS","authors":"V. Tuz, N. Lebed","doi":"10.33070/etars.4.2021.07","DOIUrl":"https://doi.org/10.33070/etars.4.2021.07","url":null,"abstract":"The design of twisted heat exchangers provides a possibility to compensate for temperature and mechanical stresses thus ensuring continuous and failsafe operation of the equipment. The authors use fins and multiturn pipe bundles to reduce the mass and size characteristics of the heat exchangers. Such design significantly complicates the calculating method. The main aspect of swirling flows is the presence of radial and axial pressure gradients. When vapor or gas flows swirl, the flow velocity near the walls is much higher than the average values, while at the axis the flow is significantly slower and in some cases its values can become negative. The liquid flowing near the axis has a notably lower pressure, which can cause it to boil. Considerable radial gradients of axial and rotational speed, as well as static pressure contribute to turbulent pulsations. Given that the working fluid flows along a helical line, the flow in the near-wall area is similar to the flow around curved surfaces. The study analyses how the pipe bundle geometry impacts hydraulic distribution and scrutinizes the main components of pressure loss in the twisted heat exchanger. The analysis allowed simplifying the method of hydraulic calculation of the multiturn twisted heat exchanger. Solving the outer heat transfer and hydrodynamics problem for the twisted heat exchanger allowed determining the effect of the main factors and the relationship between the parameters of the coolant and the working mass on the distribution values. The paper presents the equations for determining geometry of the pipes with different coiling diameters, as well as the equation for finding hydraulic distribution in individual pipes in the layers of the pipe bundle. The obtained results can help increase the accuracy of thermal calculation. The authors propose to use sectioning of twisted heat exchangers as a way to reduce hydraulic distribution. Bibl. 12, Fig. 1.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75453525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Volchyn, O. M. Kolomiets, S. Mezin, A. Yasynetskyi
{"title":"STUDY OF THE OXIDATION PROCESS OF NITROGEN OXIDES BY OZONE","authors":"I. Volchyn, O. M. Kolomiets, S. Mezin, A. Yasynetskyi","doi":"10.33070/etars.4.2021.06","DOIUrl":"https://doi.org/10.33070/etars.4.2021.06","url":null,"abstract":"The need to reduce emissions of pollutants, in particular nitrogen oxides, as required by regulations in Ukraine, requires the use of modern technologies and methods for waste gas treatment at industrial enterprises. This is especially true of thermal power plants, which are powerful sources of nitrogen oxide emissions. The technological part of the wet or semi-dry method of purification is the area for the oxidation of nitrogen oxides to obtain easily soluble compounds. The paper presents the results of a study of the process of ozone oxidation of nitrogen oxides in a chemical reactor. Data for the analysis of the process were obtained by performing physical experiments on a laboratory installation and related calculations on a mathematical model. Studies of the oxidation process have shown that the required amount of ozone depends not only on the content of nitrogen monoxide, but also on the content of nitrogen dioxide. The process of conversion of nitrogen monoxide to a satisfactory level occurs at the initial value of the molar ratio of ozone to nitrogen monoxide in the range of 1.5…2. The conversion efficiency of nitrogen monoxide reaches 90% at a gas temperature less than 100 °C. To achieve high conversion efficiency at gas temperatures above 100 °C, it is necessary to increase the initial ozone content when the molar ratio exceeds 2. The analysis shows that the conversion efficiency of nitric oxide largely depends on the residence time of the gas mixture in the reaction zone. Due to lack of time under certain conditions, the efficiency decreases by approximately 46%. To increase it, it is necessary to accelerate the rate of oxidation reactions due to better mixing of gases by turbulence of the flow in the oxidizing reactor. Bibl. 6, Fig. 6, Tab. 3.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85795266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Sigal, E. M. Lavrentsov, A. Smikhula, O. Marasin, E.P. Dombrovska
{"title":"ENERGY EFFICIENT EQUIPMENT FOR MODERNIZATION OF THE GAS BOILERS POWER 0.1-30 MW","authors":"I. Sigal, E. M. Lavrentsov, A. Smikhula, O. Marasin, E.P. Dombrovska","doi":"10.33070/etars.4.2021.03","DOIUrl":"https://doi.org/10.33070/etars.4.2021.03","url":null,"abstract":"The possibility of modernization of boilers TVH-8M, TVH-8 and NYYSTU-5, operated in Ukraine, with the increasing of their technical and economic indicators to the modern European level is shown. Projects of modernization of boilers have been developed, which consist in redesign of heating surfaces in convective shafts of existing boilers without increasing their overall dimensions with using convective part of pipes diameter 32 x 3 mm and replacement of burner devices by developed new type MPIG-3. It is shown that the results of industrial implementations achieved efficiency of boilers type TVH-8M (TVH-8) 94-96% in the operating range of their load and obtained the calculated efficiency for boilers NYYSTU-5 92-94%. It is experimentally proven that when installing special calibrated nozzle, instead of drilled holes in the collectors of gas burners, it is possible to keep the nozzle geometry (natural gas burner consumption depending on pressure) unchanged throughout the service life. The technical possibility of combustion of biogas and mixtures of natural gas and hydrogen in the slot bottom diffusion burners of the MPIG-3 type, when replacing only the nozzle apparatus is shown. Bibl. 17, Fig. 6, Table 1.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82338929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A STATE OF ART AND PROSPECTS OF HANDLING USED PET BOTTLES","authors":"I. Mikulionok","doi":"10.33070/etars.4.2021.05","DOIUrl":"https://doi.org/10.33070/etars.4.2021.05","url":null,"abstract":"The main data on the production volume of bottles from polyethylene terephthalate (PET) in the world are presented. The main ways of handling used PET bottles as one of the hazardous types of waste for the environment, but promising from the point of view of using their properties, are analyzed. The main methods of handling used PET bottles are considered and a critical analysis of each of them is given. Particular attention is paid to the methods of recycling PET bottles, which made it possible to efficiently use recycled PET raw materials directly for their intended purpose. The features of physical, chemical, biological and combined processing methods are also considered, in particular, combustion, gasification, pyrolysis, plasma decomposition of PET bottles, as well as their decomposition under the influence of microorganisms. The main ways of solving the problem of used PET bottles are proposed. Bibl. 84, Fig. 1.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85745040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MODELING OF A DUSTED GAS FLOW CLEANING PROCESS USING A KINEMATIC MODEL OF THE INTERACTION OF DISPERSED PARTICLES WITH DROPLETS IN A WET SCRUBBER","authors":"I. Volchyn, V. Raschepkin","doi":"10.33070/etars.3.2021.07","DOIUrl":"https://doi.org/10.33070/etars.3.2021.07","url":null,"abstract":"A mathematical model is proposed for the scavenging process of the dispersed particles by droplets in a wet scrubber under excess spray density in Venturi tube within kinematic approach of the interaction of particles in countercurrent gas-dispersed flows, which refines the existing engineering model, taking into account the spatial size variation of the droplets, due to their coagulation with wet slurry droplets and uncaptured particles entering a wet scrubber from the Venturi tube. The results of calculations with the adopted mathematical model showed that in case of possibility to organize the spraying of a gas flow in a scrubber with 300–500 micron droplets aerosol at a specific spray density of about 1 liter/m3, a 1–2 meters wide layer of droplets ensures effective absorption of both uncaptured PM2.5 solid particles, and the slurry droplets from the Venturi tube. The ejection of the slurry droplets into a wet scrubber from the Venturi tube, and the associated increase in the size of the scrubber droplets due to coagulation with slurry droplets, does not noticeably affect the efficiency of the dusted gas stream cleaning. An adopted mathematical model was applied to calculate the capture of particles by droplets in cylindrical and conical scrubbers. Due to the increase in a residence time of the droplets upon increased velocity of the countercurrent gas flow, the efficiency of gas cleaning from dispersed particles in a conical scrubber appears to be higher than in a cylindrical scrubber. However, with an increase in the spray density above 2 liter/m3 and with droplet diameters greater than 1000 microns, the efficiency of the conical scrubber decreases, which is associated to an increase in the escape of a significant proportion of massive drops to the walls with a reduction in the scrubber reactor cross-section. Bibl. 21, Fig. 4.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79107067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Simeyko, A. Malinouski, S. Karsim, M. Sydorenko, A. Kustovska, O. Liaposhchenko, S. V. Kupriyanchuk
{"title":"INVESTIGATION OF THE PROCESS OF OBTAINING PYROCARBON IN AN ELECTROTHERMAL FLUIDIZED BED","authors":"K. Simeyko, A. Malinouski, S. Karsim, M. Sydorenko, A. Kustovska, O. Liaposhchenko, S. V. Kupriyanchuk","doi":"10.33070/etars.3.2021.03","DOIUrl":"https://doi.org/10.33070/etars.3.2021.03","url":null,"abstract":"Carbon materials with a wide range of performance properties are used in various science, technology, and industry fields. For example, Pyrocarbon has the prospect of being used in nuclear power engineering, special metallurgy, aerospace technologies, heat exchange equipment, medicine, mechanical engineering, reactor building and other industries. The research described in the article aims to study the process of obtaining pyrocarbon in an electrothermal fluidized bed. The research is based on experimental methods of studying the process of obtaining pyrolytic carbon. Pyrocarbon is precipitated during pyrolysis (thermal destruction) of hydrocarbons in an electrothermal fluidized bed reactor. Natural gas was used as a fluidizing agent, and crushed fine electrode graphite of the GE model was used as a fluidized bed. When producing batches of pyrocarbon material, taking into account that the particle size will increase, these particles were crushed and subsequently used as a fluidized bed, thereby replacing graphite with pyrocarbon. As a result of the experimental studies carried out in the reactor with the electrothermal fluidized bed reactor, the batches of pyrocarbon material that were produced based on artificial graphite were produced. Studies using electron microscopy showed a change in the color and structure of the pyrocarbon coating depending on the processing cycle in the electrothermal fluidized bed reactor at temperatures of 900–1200 °C. Diffractometric analysis showed that pyrocarbon was identified in the treated material. Therefore, the adequacy of the method for calculating the heat balance has been confirmed. Bibl. 36, Fig. 7, Table 1.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88689577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. V. Kalashnikov, S. Budniak, Yu.V. Ivanov, Yu.M. Belyansky, N. O. Aptulina, A. O. Zobnin
{"title":"COMPARISON OF GAZKONDNAFTA AND HYSYS SOFTWARE SYSTEMS IN THE FIELD OF COMPUTER MODELING OF OIL AND GAS TECHNOLOGIES","authors":"O. V. Kalashnikov, S. Budniak, Yu.V. Ivanov, Yu.M. Belyansky, N. O. Aptulina, A. O. Zobnin","doi":"10.33070/etars.3.2021.01","DOIUrl":"https://doi.org/10.33070/etars.3.2021.01","url":null,"abstract":"The experimental and calculated according to program systems GasCondOil, Aspen-HYSYS and PRO-II compositions of the gas — liquid phases (hydrocarbon and aqueous solutions) and their thermodynamic properties are compared, as well as the accuracy of technological calculations of field pipelines and natural gas and oil treatment processes. It is shown that some of the field technological processes, calculated by the program system GasCondOil, are not modeled on Aspen-HYSYS. Bibl. 16, Fig. 9, Tab. 15.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90970956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}