K. Simeyko, A. Malinouski, S. Karsim, M. Sydorenko, A. Kustovska, O. Liaposhchenko, S. V. Kupriyanchuk
{"title":"INVESTIGATION OF THE PROCESS OF OBTAINING PYROCARBON IN AN ELECTROTHERMAL FLUIDIZED BED","authors":"K. Simeyko, A. Malinouski, S. Karsim, M. Sydorenko, A. Kustovska, O. Liaposhchenko, S. V. Kupriyanchuk","doi":"10.33070/etars.3.2021.03","DOIUrl":null,"url":null,"abstract":"Carbon materials with a wide range of performance properties are used in various science, technology, and industry fields. For example, Pyrocarbon has the prospect of being used in nuclear power engineering, special metallurgy, aerospace technologies, heat exchange equipment, medicine, mechanical engineering, reactor building and other industries. The research described in the article aims to study the process of obtaining pyrocarbon in an electrothermal fluidized bed. The research is based on experimental methods of studying the process of obtaining pyrolytic carbon. Pyrocarbon is precipitated during pyrolysis (thermal destruction) of hydrocarbons in an electrothermal fluidized bed reactor. Natural gas was used as a fluidizing agent, and crushed fine electrode graphite of the GE model was used as a fluidized bed. When producing batches of pyrocarbon material, taking into account that the particle size will increase, these particles were crushed and subsequently used as a fluidized bed, thereby replacing graphite with pyrocarbon. As a result of the experimental studies carried out in the reactor with the electrothermal fluidized bed reactor, the batches of pyrocarbon material that were produced based on artificial graphite were produced. Studies using electron microscopy showed a change in the color and structure of the pyrocarbon coating depending on the processing cycle in the electrothermal fluidized bed reactor at temperatures of 900–1200 °C. Diffractometric analysis showed that pyrocarbon was identified in the treated material. Therefore, the adequacy of the method for calculating the heat balance has been confirmed. Bibl. 36, Fig. 7, Table 1.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Technologies & Resource Saving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33070/etars.3.2021.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon materials with a wide range of performance properties are used in various science, technology, and industry fields. For example, Pyrocarbon has the prospect of being used in nuclear power engineering, special metallurgy, aerospace technologies, heat exchange equipment, medicine, mechanical engineering, reactor building and other industries. The research described in the article aims to study the process of obtaining pyrocarbon in an electrothermal fluidized bed. The research is based on experimental methods of studying the process of obtaining pyrolytic carbon. Pyrocarbon is precipitated during pyrolysis (thermal destruction) of hydrocarbons in an electrothermal fluidized bed reactor. Natural gas was used as a fluidizing agent, and crushed fine electrode graphite of the GE model was used as a fluidized bed. When producing batches of pyrocarbon material, taking into account that the particle size will increase, these particles were crushed and subsequently used as a fluidized bed, thereby replacing graphite with pyrocarbon. As a result of the experimental studies carried out in the reactor with the electrothermal fluidized bed reactor, the batches of pyrocarbon material that were produced based on artificial graphite were produced. Studies using electron microscopy showed a change in the color and structure of the pyrocarbon coating depending on the processing cycle in the electrothermal fluidized bed reactor at temperatures of 900–1200 °C. Diffractometric analysis showed that pyrocarbon was identified in the treated material. Therefore, the adequacy of the method for calculating the heat balance has been confirmed. Bibl. 36, Fig. 7, Table 1.