Drug Delivery and Translational Research最新文献

筛选
英文 中文
Auranofin loaded silk fibroin nanoparticles for colorectal cancer treatment. 用于治疗结直肠癌的负载蚕丝纤维素纳米粒子。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2025-06-01 Epub Date: 2024-10-09 DOI: 10.1007/s13346-024-01719-2
Marta Pérez-Lloret, Eileen Reidy, Antonio Abel Lozano-Pérez, Juan A Marchal, Piet N L Lens, Aideen E Ryan, Andrea Erxleben
{"title":"Auranofin loaded silk fibroin nanoparticles for colorectal cancer treatment.","authors":"Marta Pérez-Lloret, Eileen Reidy, Antonio Abel Lozano-Pérez, Juan A Marchal, Piet N L Lens, Aideen E Ryan, Andrea Erxleben","doi":"10.1007/s13346-024-01719-2","DOIUrl":"10.1007/s13346-024-01719-2","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is the second most common cause of cancer related deaths worldwide and the prevalence in young people especially is increasing annually. In the search for innovative approaches to treat the disease, drug delivery systems (DDS) are promising owing to their unique properties, which allow improved therapeutic results with lower drug concentrations, overcoming drug resistance and at the same time potentially reducing side effects. Silk fibroin is a biopolymer that can be processed to obtain biocompatible and biodegradable nanoparticles that can be efficiently loaded by surface adsorption with small-molecule therapeutics and allow their transport and sustained release by modulating their pharmacokinetics. Auranofin (AF) has recently been repurposed for its strong anticancer activity and is currently in clinical trials. Its mechanism of action is through the inhibition of thioredoxin reductase enzymes, which play an essential role in several intracellular processes and are overexpressed in some tumours. Taking into account that AF has a low solubility in water, we propose silk fibroin nanoparticles (SFN) as AF carrier in order to improve its bioavailability, increasing cellular absorption and preventing its degradation or avoiding some resistance mechanisms. Here we report the preparation and characterization of a new formulation of AF-loaded silk fibroin nanoparticles (SFN-AF), its functionalization with FITC for the analysis of cellular uptake, as well as its cytotoxic activity against cell lines of human colorectal cancer (HT29 and HCT116) in both 2D and 3D cell cultures. 3D spheroid models provide a 3D environment which mimics the 3D aspects of CRC observed in vivo and represents an effective 3D environment to screen therapeutics for the treatment of CRC. The loaded nanoparticles showed a spherical morphology with a hydrodynamic diameter of ~ 160 nm and good stability in aqueous solution due to their negative surface charges. FESEM-EDX analysis revealed a homogeneous distribution of Au clusters with high electron density on the surface of the nanoparticles. SFN-AF incubated in phosphate buffer at 37 °C released 77% of the loaded AF over 10 days, showing an initial burst and then sustained release. Flow cytometry analysis showed that FITC-SFN-AF was efficiently internalized by both cell lines, which was confirmed by confocal microscopy imaging. SFN enhanced the cytotoxicity of AF in 2D cultures in both CRC lines. Promising results were also obtained in 3D culture paving the way for future application of this strategy as a therapy for CRC.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"1994-2008"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protacs in cancer therapy: mechanisms, design, clinical trials, and future directions. 质子在癌症治疗中的作用:机制、设计、临床试验和未来方向。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2025-06-01 Epub Date: 2024-11-29 DOI: 10.1007/s13346-024-01754-z
Akash Vikal, Rashmi Maurya, Brij Bihari Patel, Rajeev Sharma, Preeti Patel, Umesh K Patil, Balak Das Kurmi
{"title":"Protacs in cancer therapy: mechanisms, design, clinical trials, and future directions.","authors":"Akash Vikal, Rashmi Maurya, Brij Bihari Patel, Rajeev Sharma, Preeti Patel, Umesh K Patil, Balak Das Kurmi","doi":"10.1007/s13346-024-01754-z","DOIUrl":"10.1007/s13346-024-01754-z","url":null,"abstract":"<p><p>Cancer develops as a result of changes in both genetic and epigenetic mechanisms, which lead to the activation of oncogenes and the suppression of tumor suppressor genes. Despite advancements in cancer treatments, the primary approach still involves a combination of chemotherapy, radiotherapy, and surgery, typically providing a median survival of approximately five years for patients. Unfortunately, these therapeutic interventions often bring about substantial side effects and toxicities, significantly impacting the overall quality of life for individuals undergoing treatment. Therefore, urgent need of research required which comes up with effective treatment of cancer. This review explores the transformative role of Proteolysis-Targeting Chimeras (PROTACs) in cancer therapy. PROTACs, an innovative drug development strategy, utilize the cell's protein degradation machinery to selectively eliminate disease-causing proteins. The review covers the historical background, mechanism of action, design, and structure of PROTACs, emphasizing their precision in targeting oncogenic proteins. The discussion extends to the challenges, nanotechnology applications, and ongoing clinical trials, showcasing promising results and clinical progress. The review concludes with insights into patents, future directions, and the potential impact of PROTACs in addressing dysregulated protein expression across various diseases. Overall, it provides a concise yet comprehensive overview for researchers, clinicians, and industry professionals involved in developing targeted therapies.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"1801-1827"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and optimization of hydrogel-forming microneedles fabricated with 3d-printed molds for enhanced dermal diclofenac sodium delivery: a comprehensive in vitro, ex vivo, and in vivo study. 开发和优化利用 3d 打印模具制造的水凝胶成型微针,以增强双氯芬酸钠的皮肤给药:一项全面的体外、体内和体外研究。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2025-06-01 Epub Date: 2024-10-25 DOI: 10.1007/s13346-024-01728-1
Emre Tunçel, Serdar Tort, Sevtap Han, Çiğdem Yücel, Figen Tırnaksız
{"title":"Development and optimization of hydrogel-forming microneedles fabricated with 3d-printed molds for enhanced dermal diclofenac sodium delivery: a comprehensive in vitro, ex vivo, and in vivo study.","authors":"Emre Tunçel, Serdar Tort, Sevtap Han, Çiğdem Yücel, Figen Tırnaksız","doi":"10.1007/s13346-024-01728-1","DOIUrl":"10.1007/s13346-024-01728-1","url":null,"abstract":"<p><p>With the developing manufacturing technologies, the use of 3D printers in microneedle production is becoming widespread. Hydrogel-forming microneedles (HFMs), a variant of microneedles, demonstrate distinctive features such as a high loading capacity and controlled drug release. In this study, the conical microneedle master molds with approximately 500 μm needle height and 250 μm base diameter were created using a Stereolithography (SLA) 3D printer and were utilized to fabricate composite HFMs containing diclofenac sodium. Using Box-Behnken Design, the effects of different polymers on swelling index and mechanical strength of the developed HFMs were evaluated. The optimum HFMs were selected according to experimental design results with the aim of the highest mechanical strength with varying swelling indexes, which was needed to use 20% Gantrez S97 and 0.1% (F22), 0.42% (F23), and 1% (F24) hyaluronic acid. The skin penetration and drug release properties of the optimum formulations were assessed. Ex vivo studies were conducted on formulations to determine drug penetration and accumulation. F24, which has the highest mechanical strength and optimized swelling index, achieved the highest drug accumulation in the skin tissue (17.70 ± 3.66%). All optimum HFMs were found to be non-cytotoxic by the MTT cell viability test (> 70% cell viability). In in vivo studies, the efficacy of the F24 was assessed for the treatment of xylene-induced ear edema by contrasting it to the conventional dosage form. It was revealed that HFMs might be an improved replacement for conventional dosage forms in terms of dermal diseases such as actinic keratosis.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"2116-2145"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volumetric printing and non-destructive drug quantification of water-soluble supramolecular hydrogels. 水溶性超分子水凝胶的体积打印和无损药物定量。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2025-06-01 Epub Date: 2024-10-18 DOI: 10.1007/s13346-024-01723-6
Jun Jie Ong, Anna Kirstine Jørgensen, Zilan Zhu, Richard Telford, Philip J Davies, Simon Gaisford, Alvaro Goyanes, Abdul W Basit
{"title":"Volumetric printing and non-destructive drug quantification of water-soluble supramolecular hydrogels.","authors":"Jun Jie Ong, Anna Kirstine Jørgensen, Zilan Zhu, Richard Telford, Philip J Davies, Simon Gaisford, Alvaro Goyanes, Abdul W Basit","doi":"10.1007/s13346-024-01723-6","DOIUrl":"10.1007/s13346-024-01723-6","url":null,"abstract":"<p><p>Vat photopolymerisation 3D printing is being actively explored for manufacturing personalised medicines due to its high dimensional accuracy and lack of heat application. However, several challenges have hindered its clinical translation, including the inadequate printing speeds, the lack of resins that give soluble matrices, and the need for non-destructive quality control measures. In this study, for the first time, a rapid approach to producing water-soluble vat photopolymerised matrices and a means of non-destructively verifying their drug content were investigated. Volumetric printing, a novel form of vat photopolymerisation, was used to fabricate personalised warfarin-loaded 3D-printed tablets (printlets). Eight different formulations containing varying amounts of warfarin (0.5-6.0% w/w) were used to print two different sized torus-shaped printlets within 6.5 to 11.1 s. Nuclear magnetic resonance (NMR) spectroscopy revealed the presence of only trace amounts of unreacted acrylate monomers, suggesting that the photopolymerisation reaction had occurred to near completion. All printlets completely solubilised and released their entire drug load within 2.5 to 7 h. NIR spectroscopy (NIRS) was used to non-destructively verify the dose of warfarin loaded into the vat photopolymerised printlets. The partial least square regression model built showed strong linearity (R<sup>2</sup> = 0.980), and high accuracy in predicting the drug loading of the test sample (RMSEP = 0.205%). Therefore, this study advances pharmaceutical vat photopolymerisation by demonstrating the feasibility of producing water-soluble printlets via volumetric printing and quantifying the drug load of vat photopolymerised printlets with NIRS.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"2048-2063"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12037435/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational development of fingolimod nano-embedded microparticles as nose-to-brain neuroprotective therapy for ischemic stroke. 芬戈莫德纳米嵌入微粒作为缺血性脑卒中鼻-脑神经保护疗法的合理开发。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2025-06-01 Epub Date: 2024-11-01 DOI: 10.1007/s13346-024-01721-8
Xinyue Zhang, Guangpu Su, Zitong Shao, Ho Wan Chan, Si Li, Stephanie Chow, Chi Kwan Tsang, Shing Fung Chow
{"title":"Rational development of fingolimod nano-embedded microparticles as nose-to-brain neuroprotective therapy for ischemic stroke.","authors":"Xinyue Zhang, Guangpu Su, Zitong Shao, Ho Wan Chan, Si Li, Stephanie Chow, Chi Kwan Tsang, Shing Fung Chow","doi":"10.1007/s13346-024-01721-8","DOIUrl":"10.1007/s13346-024-01721-8","url":null,"abstract":"<p><p>Ischemic stroke is one of the major diseases causing varying degrees of dysfunction and disability worldwide. The current management of ischemic stroke poses significant challenges due to short therapeutic windows and limited efficacy, highlighting the pressing need for novel neuroprotective treatment strategies. Previous studies have shown that fingolimod (FIN) is a promising neuroprotective drug. Here, we report the rational development of FIN nano-embedded nasal powders using full factorial design experiments, aiming to provide rapid neuroprotection after ischemic stroke. Flash nanoprecipitation was employed to produce FIN nanosuspensions with the aid of polyvinylpyrrolidone and cholesterol as stabilizers. The optimized nanosuspension (particle size = 134.0 ± 0.6 nm, PDI = 0.179 ± 0.021, physical stability = 72 ± 0 h, and encapsulation efficiency of FIN = 90.67 ± 0.08%) was subsequently spray-dried into a dry powder, which exhibited excellent redispersibility (RdI = 1.09 ± 0.04) and satisfactory drug deposition in the olfactory region using a customized 3D-printed nasal cast (45.4%) and an Alberta Idealized Nasal Inlet model (8.6%) at 15 L/min. The safety of the optimized FIN nano-embedded dry powder was confirmed in cytotoxicity studies with nasal (RPMI 2650 and Calu-3 cells) and brain related cells (SH-SY5Y and PC 12 cells), while the neuroprotective effects were demonstrated by observed behavioral improvements and reduced cerebral infarct size in a middle cerebral artery occlusion mouse stroke model. The neuroprotective effect was further evidenced by increased expression of anti-apoptotic protein BCL-2 and decreased expression of pro-apoptotic proteins CC3 and BAX in brain peri-infarct tissues. Our findings highlight the potential of nasal delivery of FIN nano-embedded dry powder as a rapid neuroprotective treatment strategy for acute ischemic stroke.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"2022-2047"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12037672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quality by design optimization of formulation variables and process parameters for enhanced transdermal delivery of nanosuspension. 通过设计优化配方变量和工艺参数,提高纳米悬浮液的透皮给药质量。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2025-06-01 Epub Date: 2024-11-04 DOI: 10.1007/s13346-024-01733-4
Hiep X Nguyen, Nhi Y Le, Chien N Nguyen
{"title":"Quality by design optimization of formulation variables and process parameters for enhanced transdermal delivery of nanosuspension.","authors":"Hiep X Nguyen, Nhi Y Le, Chien N Nguyen","doi":"10.1007/s13346-024-01733-4","DOIUrl":"10.1007/s13346-024-01733-4","url":null,"abstract":"<p><p>This investigation aims to fabricate, characterize, and optimize organogel containing andrographolide nanosuspension to enhance transdermal drug delivery into and across the skin in vitro. We identified the critical material attributes (CMAs) and critical process parameters (CPPs) that impact key characteristics of andrographolide nanosuspension using a systematic quality-by-design approach. We prepared andrographolide nanosuspension using the wet milling technique and evaluated various properties of the formulations. The CMAs were types and concentrations of polymers, types and concentrations of surfactants, drug concentration, and lipid concentration. The CPPs were volume of milling media and milling duration. Mean particle size, polydispersity index, encapsulation efficiency, and drug loading capacity as critical quality attributes were selected in the design for the evaluation and optimization of the formulations. Furthermore, we developed and evaluated organogel formulation to carry andrographolide nanosuspension 0.05% w/w. Drug release and permeation studies were conducted to assess the drug release kinetics and transdermal delivery of andrographolide. We presented the alteration in the average particle size, polydispersity index, encapsulation efficiency, drug-loading capacity, and drug release among various formulations to select the optimal parameters. The permeation study indicated that organogel delivered markedly more drug into the receptor fluid and skin tissue than DMSO gel (n = 3, p < 0.05). This enhancement in transdermal drug delivery was demonstrated by cumulative drug permeation after 24 h, steady-state flux, permeability coefficient, and predicted steady-state plasma concentration. Drug quantity in skin layers, total delivery, delivery efficiency, and topical selectivity were also reported. Conclusively, andrographolide nanosuspension-loaded organogel significantly increased transdermal drug delivery in vitro.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"2220-2251"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent updates on drug delivery approaches for improved ocular delivery with an insight into nanostructured drug delivery carriers for anterior and posterior segment disorders. 最近更新的药物递送方法,以改善眼部给药与洞察纳米结构药物递送载体的前段和后段疾病。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2025-06-01 Epub Date: 2024-12-14 DOI: 10.1007/s13346-024-01756-x
Samiullah Khan, Chi-Wai Do, Emmanuel A Ho
{"title":"Recent updates on drug delivery approaches for improved ocular delivery with an insight into nanostructured drug delivery carriers for anterior and posterior segment disorders.","authors":"Samiullah Khan, Chi-Wai Do, Emmanuel A Ho","doi":"10.1007/s13346-024-01756-x","DOIUrl":"10.1007/s13346-024-01756-x","url":null,"abstract":"<p><p>Ocular diseases have a major impact on patient's vision and quality of life, with approximately 2.2 billion people have visual impairment worldwide according to the findings from the World Health Organization (WHO). The eye is a complex organ with unique morphology and physiology consisting of numerous ocular barriers which hinders the entry of exogenous substances and impedes drug absorption. This in turn has a substantial impact on effective drug delivery to treat ocular diseases, especially intraocular disorders which has consistently presented a challenge to eye care professionals. The most common method of delivering medications to the eye is topical instillation of eye drops. Although this approach is a viable option for treating many ocular diseases remains a major challenge for the effective treatment of posterior ocular conditions. Up till now, incessant efforts have been committed to design innovative drug delivery systems with the hopes of potential clinical application. Modern developments in nanocarrier's technology present a potential chance to overcome these obstacles by enabling targeted delivery of the loaded medication to the eyes with improved solubility, delayed release, higher penetration and increased retention. This review covers the anatomy of eye with associated ocular barriers, ocular diseases and administration routes. In addition it primarily focuses on the latest progress and contemporary applications of ophthalmic formulations providing specific insight on nanostructured drug delivery carriers reported over the past 5 years highlighting their values in achieving efficient ocular drug delivery to both anterior and posterior segments. Most importantly, we outlined in this review the macro and nanotechnology based ophthalmic drug formulations that are being patented or marketed so far for treating ocular diseases. Finally, based on current trends and therapeutic concepts, we highlighted the challenges faced by novel ocular drug delivery systems and provided prospective future developments for further research in these directions. We hope that this review will serve as a source of motivation and ideas for formulation scientists in improving the design of innovative ophthalmic formulations.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"1828-1876"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating liver cancer: Precision targeting for enhanced treatment outcomes. 导航肝癌:精确靶向提高治疗效果。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2025-06-01 Epub Date: 2025-01-23 DOI: 10.1007/s13346-024-01780-x
Ankit Jain, Ashwini Kumar Mishra, Pooja Hurkat, Satish Shilpi, Nishi Mody, Sanjay Kumar Jain
{"title":"Navigating liver cancer: Precision targeting for enhanced treatment outcomes.","authors":"Ankit Jain, Ashwini Kumar Mishra, Pooja Hurkat, Satish Shilpi, Nishi Mody, Sanjay Kumar Jain","doi":"10.1007/s13346-024-01780-x","DOIUrl":"10.1007/s13346-024-01780-x","url":null,"abstract":"<p><p>Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting. While various drug delivery systems have shown potential for reaching hepatic cells, nano-carriers offer significant size, distribution, and targetability advantages. Engineered nanocarriers can be customized to achieve effective and safe targeting of tumors by manipulating physical characteristics such as particle size or attaching receptor-specific ligands. This method is particularly advantageous in treating liver cancer by targeting specific hepatocyte receptors and enzymatic pathways for both passive and active therapeutic strategies. It highlights the epidemiology of liver cancer and provides an in-depth analysis of the various targeting approaches, including prodrugs, liposomes, magneto-liposomes, micelles, glycol-dendrimers, magnetic nanoparticles, chylomicron-based emulsion, and quantum dots surface modification with receptor-specific moieties. The insights from this review can be immensely significant for preclinical and clinical researchers working towards developing effective treatments for liver cancer. By utilizing these novel strategies, we can overcome the limitations of conventional therapies and offer better outcomes for liver cancer patients.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"1935-1961"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of the novel formulations of perospirone for the treatment of schizophrenia. 开发用于治疗精神分裂症的 perospirone 新型制剂。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2025-06-01 Epub Date: 2024-10-31 DOI: 10.1007/s13346-024-01730-7
Zijun Zhang, Famin Ke, Jili Wu, Xiyao Li, Xin Chen, Lanxing Zhang, Pei Jing, Zerong Liu, Zhongbing Liu, Ruilin Lu, Shihua Fu, Meiling Zhou, Yan Lin, Xiaoduan Sun, Zhirong Zhong
{"title":"Development of the novel formulations of perospirone for the treatment of schizophrenia.","authors":"Zijun Zhang, Famin Ke, Jili Wu, Xiyao Li, Xin Chen, Lanxing Zhang, Pei Jing, Zerong Liu, Zhongbing Liu, Ruilin Lu, Shihua Fu, Meiling Zhou, Yan Lin, Xiaoduan Sun, Zhirong Zhong","doi":"10.1007/s13346-024-01730-7","DOIUrl":"10.1007/s13346-024-01730-7","url":null,"abstract":"<p><p>Schizophrenia is a severe mental illness. Its clinical features include positive symptoms (hallucinations, delusions, thought disorders), negative symptoms (avolition, anhedonia, poverty of thought, social withdrawal), and cognitive dysfunction. A large number of antipsychotic drugs with traditional dosage forms are available to mitigate the symptoms of schizophrenia but the duration of action is commonly short, often requiring frequent administration. The perospirone hydrochloride hydrate (PER), as a second-generation antipsychotic drug, shows therapeutic effects on both positive and negative symptoms of schizophrenia, with less impact on cognitive function. However, it suffers from a short half-life, fluctuating blood concentration, instability in the circulating leading to peak-trough fluctuations, and poor patient compliance due to the required frequent administration. Based on the hydrophilic matrix, we developed novel formulations of PER, including the extended-release and the controlled-release tablets of PER. The resulting formulations delayed the drug release and prolonged the persistence of PER, leading to an extended half-life and reduced fluctuations in blood concentration with stable therapeutic levels and an improved absorption with higher bioavailability, thus reducing dosing frequency. These oral extended-release and controlled-release tablets promise to alleviate patients' medication discomfort and provide long-term sustained drug release. They would provide a platform with broad prospects for the clinical treatment of schizophrenia.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"2162-2178"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustained release of proteins from contact lenses with porous annulus. 从多孔环形隐形眼镜中持续释放蛋白质。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2025-06-01 Epub Date: 2024-10-14 DOI: 10.1007/s13346-024-01720-9
Zachary Sparks, Anuj Chauhan
{"title":"Sustained release of proteins from contact lenses with porous annulus.","authors":"Zachary Sparks, Anuj Chauhan","doi":"10.1007/s13346-024-01720-9","DOIUrl":"10.1007/s13346-024-01720-9","url":null,"abstract":"<p><p>Ophthalmic drugs are administered to the front of the eye by eyedrops. The bioavailability of drugs delivered via eye drops is low due to tear turnover. Contact lenses can address some deficiencies of eye drops by sustaining the delivery of drugs, but commercial contact lenses have small pore sizes that cannot load biologics, which are becoming more common for treating ophthalmic diseases. This study aims to investigate novel poly(hydroxyethyl methacrylate) (pHEMA) lenses with transparent center and porous annulus for sustained release of model proteins. A novel hydrogel polymerization process was used to fabricate concentric, porous layer pHEMA hydrogel rods. The hydrogels were lathe cut into contact lenses which were explored for the delivery of proteins and gold nanoparticles. Lenses were characterized by partition coefficient and diffusivity, which was estimated by fitting experimental data to an analytical model. Transmittance measurements were made to compare transparency of porous lens centers to commercial contact lenses. Porous pHEMA lenses consisting of a concentric, porous layer made from 55% water content in precursor were successfully lathe cut into lenses with transparent center and opaque porous annulus. The porous lenses could load large model proteins of bovine serum albumin and human γ-globulin and provide sustained release. The core annular pHEMA contact lenses consisting of an outer annulus of opaque, porous pHEMA and an inner, center layer of clear, nonporous pHEMA can provide sustained delivery of biologics.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"2009-2021"},"PeriodicalIF":5.7,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信