Carlos Cabo, S. Garcia-Cortes, A. Menéndez-Díaz, C. Ordóñez
{"title":"Automatic road edge detection from Mobile Laser Scanning (MLS)","authors":"Carlos Cabo, S. Garcia-Cortes, A. Menéndez-Díaz, C. Ordóñez","doi":"10.1117/12.2257108","DOIUrl":"https://doi.org/10.1117/12.2257108","url":null,"abstract":"In this article we present an algorithm for automatic road edge detection from MLS (Mobile Laser Scanning) data. The method takes advantage of linear structures derived from MLS point clouds. These lines are extracted from the point cloud and grouped following geometric restrictions. Then, the outlines of the groups are extracted as road edges. Finally, a moving window filter is applied to those points in order to remove outliers and delineate the road edge. The method was tested on an 800m stretch of road, and the results were checked through visual inspection. Correctness and completeness were 99.1% and 97.5%, respectively.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"2022 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115653046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-wavelength digital holography for shape measurement of grinded surfaces with ultimate accuracy","authors":"P. Psota, V. Ledl, P. Vojtíšek, T. Vít","doi":"10.1117/12.2256665","DOIUrl":"https://doi.org/10.1117/12.2256665","url":null,"abstract":"The entry of CNC machining processes into optics brought the possibility of nearly arbitrary shape generation. Obviously the measurement of the generated shape increasingly gains the importance, because the generation has to be performed in an iterative manner as the required precision increases. Often mid spatial frequency error is neglected because it is not an easy task to be measured. Unfortunately those unwanted residual deviation in a shape left after grinding could dramatically complicate a subsequent polishing procedure. Mid spatial frequency content if not controlled well could spoils significantly the performance of the optical system. Elimination of mid spatial residuals originated in grinding process is nearly impossible or very difficult by sub-aperture polishing. Hence it is important to measure the grinded surface with sufficient lateral resolution. Tactile probes (usually used for shape measurement of grinded surfaces) can measure with sufficient lateral resolution but only at the expense of time. Interferometer based techniques fail when applied to scattering surfaces due to speckles. The authors have proposed multi-wavelength multi-directional digital holography – the method perfectly suitable for grinded surfaces shape measurement. Naturally, reconstructed phase maps are affected by speckle noise implying significant errors in the calculation of the shape of the surface. In order to reduce the effect of speckle noise and hence to increase the sensitivity of the measurement of the grinded surface shape, we propose to apply windowed digital holography. This paper describes the principle of the windowed digital holography and the way of straightforward application of the method in shape measurement of grinded surfaces.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124080674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Imaging in laser spectroscopy by a single-pixel camera based on speckle patterns","authors":"K. Žídek, J. Václavík","doi":"10.1117/12.2256988","DOIUrl":"https://doi.org/10.1117/12.2256988","url":null,"abstract":"Compressed sensing (CS) is a branch of computational optics able to reconstruct an image (or any other information) from a reduced number of measurements – thus significantly saving measurement time. It relies on encoding the detected information by a random pattern and consequent mathematical reconstruction. CS can be the enabling step to carry out imaging in many time-consuming measurements. The critical step in CS experiments is the method to invoke encoding by a random mask. Complex devices and relay optics are commonly used for the purpose. We present a new approach of creating the random mask by using laser speckles from coherent laser light passing through a diffusor. This concept is especially powerful in laser spectroscopy, where it does not require any complicated modification of the current techniques. The main advantage consist in the unmatched simplicity of the random pattern generation and a versatility of the pattern resolution. Unlike in the case of commonly used random masks, here the pattern fineness can be adjusted by changing the laser spot size being diffused. We demonstrate the pattern tuning together with the connected changes in the pattern statistics. In particular, the issue of patterns orthogonality, which is important for the CS applications, is discussed. Finally, we demonstrate on a set of 200 acquired speckle patterns that the concept can be successfully employed for single-pixel camera imaging. We discuss requirements on detector noise for the image reconstruction.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"10151 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129147406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monitoring of overmodulation effect in high efficient generally slanted transmission gratings produced in photopolymers","authors":"P. Vojtíšek, M. Květoň, I. Richter","doi":"10.1117/12.2256488","DOIUrl":"https://doi.org/10.1117/12.2256488","url":null,"abstract":"In our laboratory, we use for fabrication of volume phase diffraction gratings a photopolymer recording material Bayfol HX. It is an extremely effective recording material; a high value of the refractive index modulation is obtained already during a holographic exposure. The value of this refractive index modulation influences the diffraction properties (e.g. efficiency) of the recorded gratings and, in the case of transmission gratings, the growth of this modulation beyond the optimal value leads to an effect of so called overmodulation. This effect is, in the most cases, unwanted as it causes the decrease of the diffraction efficiency from its maximum value (practically close to 100%). The analysis whether the grating is over- or under- modulated is relatively difficult as the value of the refractive index modulation can’t be measured directly and it is evaluated from the measurement of the diffraction efficiency. However, the obtained value can be often incorrect due to the overmodulation effect. In this contribution, we would like to extend (to include any arbitrary slanted transmission gratings) and discuss a simple measurement method for the determination of the correct value of the refractive index modulation based on a multiple/two-wavelength measurement of a diffraction efficiency of transmission gratings. The theoretical idea of this method and also experimental results obtained on photopolymer Bayfol HX will be presented. From practical point of view, this approach help us mainly for correct adjustment of exposure parameters to reach efficient gratings.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"10151 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129727376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of oxygen on the quality of the PZT thin films prepared by IBS","authors":"P. Horodyska, J. Hlubuček, K. Žídek, J. Václavík","doi":"10.1117/12.2257224","DOIUrl":"https://doi.org/10.1117/12.2257224","url":null,"abstract":"Pb(Zr,Ti)O3 (PZT) is a ferroelectric material interesting for its high dielectric constant and piezoelectric response. PZT thin films can be prepared by various methods, e.g. pulsed laser deposition, chemical vapor deposition, sol-gel and, most frequently, sputtering. Though the magnetron sputtering is used more frequently, PZT thin films can be prepared also by ion-beam sputtering (IBS). In this paper we study the deposition process of PZT thin films in our IBS system with a possibility of ion-beam assisted deposition (IBAD), which has the advantage that more energy can be added to the growing layer. We show how in our system the resulting layers, mainly their quality, the Pb content, which is important for the creation of the perovskite crystal structure, and the resulting crystal structure are influenced by the oxygen flux during the deposition for the samples grown on the silicon substrate with and without an intermediate Ti seeding layer.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"26 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120973292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Positioning system and lattice design for subaperture stitching interferometry","authors":"J. Kredba, P. Psota","doi":"10.1117/12.2257310","DOIUrl":"https://doi.org/10.1117/12.2257310","url":null,"abstract":"The demands on the quality of large aperture spherical and mild aspheric optical surfaces continue to rise in modern optical systems. Due to the aperture size of these surfaces measuring of their shape is quite problematic. One of the ways to measure these surfaces is the subaperture stitching interferometry. Its accuracy is highly depended on lattice design and accuracy of the positioning system. Optimal lattice design in relation to transmission element applied in interferometer together with coordinates calculation for the positioning system for measuring individual subapertures is the subject of this paper. To set the required orientation and position of the optical surface relative to the interferometer positioning system with six degrees of freedom was used. Three of them were realized as prismatic kinematic pairs and remaining three as revolution joints. In this paper the choice of coordinate systems for individual axes of the positioning system together with inverse kinematics used for setting the correct position and orientation of the optical surface are described.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126797110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Absolute and relative surface profile interferometry using multiple frequency-scanned lasers","authors":"M. Peca, P. Psota, P. Vojtíšek, V. Ledl","doi":"10.1117/12.2263656","DOIUrl":"https://doi.org/10.1117/12.2263656","url":null,"abstract":"An interferometer has been used to measure the surface profile of generic object. Frequency scanning interferometry has been employed to provide unambiguous phase readings, to suppress etalon fringes, and to supersede phase-shifting. The frequency scan has been performed in three narrow wavelength bands, each generated by a temperature tuned laser diode. It is shown, that for certain portions of measured object, it was possible to get absolute phase measurement, counting all wave periods from the point of zero path difference, yielding precision of 2.7nm RMS over 11.75mm total path difference. For the other areas where steep slopes were present in object geometry, a relative measurement is still possible, at measured surface roughness comparable to that of machining process (the same 2.7nm RMS). It is concluded, that areas containing steep slopes exhibit systematic error, attributed to a combined factors of dispersion and retrace error.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121337081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}