Indonesian Journal of Applied Statistics最新文献

筛选
英文 中文
Structural Equation Modeling (SEM) untuk Mengukur Pengaruh Pelayanan, Harga, dan Keselamatan terhadap Tingkat Kepuasan Pengguna Jasa Angkutan Umum Selama Pandemi Covid-19 di Kota Ambon
Indonesian Journal of Applied Statistics Pub Date : 2021-05-30 DOI: 10.13057/IJAS.V4I1.45784
Zakheus Putlely, Y. A. Lesnussa, A. Z. Wattimena, M. Y. Matdoan
{"title":"Structural Equation Modeling (SEM) untuk Mengukur Pengaruh Pelayanan, Harga, dan Keselamatan terhadap Tingkat Kepuasan Pengguna Jasa Angkutan Umum Selama Pandemi Covid-19 di Kota Ambon","authors":"Zakheus Putlely, Y. A. Lesnussa, A. Z. Wattimena, M. Y. Matdoan","doi":"10.13057/IJAS.V4I1.45784","DOIUrl":"https://doi.org/10.13057/IJAS.V4I1.45784","url":null,"abstract":"Structural Equation Modeling (SEM) is a statistical analysis technique used to build and test statistical models in the form of causal models. Large-Scale Social Restrictions (PSBB) are government policies to break the chain of spreading the corona virus (Covid-19). This policy certainly has an impact on drivers of public transport services. This research shows that the passengers are very satisfied with the travel safety factor. Meanwhile, service factors and passenger public transport fares are in the satisfied category. Furthermore, the variable service quality (MP), the price of public transportation (H), and passenger safety (KP) have an influence on passenger satisfaction. Because the t-value is greater than 1.96 (for the real level of 5%). The influence of service quality, price and safety variables on passenger satisfaction is 78.1%, the remaining 21.9% is influenced by other variables outside the research.Keywords: covid-19, structural equation modeling, satisfaction.","PeriodicalId":112023,"journal":{"name":"Indonesian Journal of Applied Statistics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128354934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Front Matter Vol 3 No 2 2020 前事第三卷第二期2020
Indonesian Journal of Applied Statistics Pub Date : 2021-01-23 DOI: 10.13057/ijas.v3i2.48001
H. Pratiwi
{"title":"Front Matter Vol 3 No 2 2020","authors":"H. Pratiwi","doi":"10.13057/ijas.v3i2.48001","DOIUrl":"https://doi.org/10.13057/ijas.v3i2.48001","url":null,"abstract":"","PeriodicalId":112023,"journal":{"name":"Indonesian Journal of Applied Statistics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123825996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back Matter Vol 3 No 2 2020 Back Matter第三卷第二期2020
Indonesian Journal of Applied Statistics Pub Date : 2021-01-23 DOI: 10.13057/ijas.v3i2.48002
H. Pratiwi
{"title":"Back Matter Vol 3 No 2 2020","authors":"H. Pratiwi","doi":"10.13057/ijas.v3i2.48002","DOIUrl":"https://doi.org/10.13057/ijas.v3i2.48002","url":null,"abstract":"","PeriodicalId":112023,"journal":{"name":"Indonesian Journal of Applied Statistics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116729676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regresi Data Panel untuk Mengetahui Faktor-Faktor yang Mempengaruhi PDRB di Provinsi DIY Tahun 2011-2015 面板数据回归,以确定2012 -2015年DIY省PDRB的影响因素
Indonesian Journal of Applied Statistics Pub Date : 2019-07-05 DOI: 10.13057/IJAS.V2I1.28950
Dea Aulia Nandita, Lalu Bayu Alamsyah, Enggar Prima Jati, Edy Widodo
{"title":"Regresi Data Panel untuk Mengetahui Faktor-Faktor yang Mempengaruhi PDRB di Provinsi DIY Tahun 2011-2015","authors":"Dea Aulia Nandita, Lalu Bayu Alamsyah, Enggar Prima Jati, Edy Widodo","doi":"10.13057/IJAS.V2I1.28950","DOIUrl":"https://doi.org/10.13057/IJAS.V2I1.28950","url":null,"abstract":"Population growth can encourage and hinder economic growth. This study aims to analyze the factors that influence gross domestic product (GDP) in Daerah Istimewa Yogyakarta (DIY) using panel data regression. This study uses three independent variables, namely number of population, number of poor population, and investment, while the dependent variable is GDP. We use secondary data obtained from Badan Pusat Statistik (BPS). The results obtained from the regression analysis of the data series time panel are generalized least square (GLS), while for the cross section data panel shows the REM model is more suitable than PLS and FEM. Based on the validity test of the influence or t-test, the variable that shows significant to the economic rate which is categorized as GRDP in the Daerah Istimewa Yogyakarta in 2011-2015 is the variable Total population and Investment which has a positive relationship.Keywords : economic growth rate, panel data regression, gross regional domestic product","PeriodicalId":112023,"journal":{"name":"Indonesian Journal of Applied Statistics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121231936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier 在Twitter社交媒体上,人们对2019年印尼总统选举的快速统计结果进行了情感分析,该结果使用的是天真的Bayes Classifier方法
Indonesian Journal of Applied Statistics Pub Date : 2019-07-05 DOI: 10.13057/IJAS.V2I1.29998
Lingga Aji Andika, Pratiwi Amalia Nur Azizah, Respatiwulan Respatiwulan
{"title":"Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier","authors":"Lingga Aji Andika, Pratiwi Amalia Nur Azizah, Respatiwulan Respatiwulan","doi":"10.13057/IJAS.V2I1.29998","DOIUrl":"https://doi.org/10.13057/IJAS.V2I1.29998","url":null,"abstract":"Indonesia is one of the countries that adheres to a democratic system. In the course of a democratic system it is marked by periodic general elections. In 2019 Indonesia held a general election simultaneously to elect the President, DPR, DPRD and DPD. After the election, a lot of opinion arise within the community, including on social media twitter. One of the topics discussed was the results of the quick count of the presidential election. Therefore, a method that can be used to analyze sentiment from the quick count opinion is needed, that is naive Bayes method. The aims of this study are to find the best naive Bayes model and to classify sentiments. The result shows the best accuracy of 82.90% with α = 0.05. The classification obtained is 34.5% (471) positive tweets and 65.5% (895) negative tweets on the results of the quick count.Keywords : sentiment analysis, naive Bayes classifier, elections, quick count","PeriodicalId":112023,"journal":{"name":"Indonesian Journal of Applied Statistics","volume":"128 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128096637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
Peramalan Tingkat Penghunian Tempat Tidur Hotel Bintang Tiga Kota Surakarta Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA)
Indonesian Journal of Applied Statistics Pub Date : 2019-07-05 DOI: 10.13057/IJAS.V2I1.31428
SH Yuniarti Dwi Pratiwi
{"title":"Peramalan Tingkat Penghunian Tempat Tidur Hotel Bintang Tiga Kota Surakarta Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA)","authors":"SH Yuniarti Dwi Pratiwi","doi":"10.13057/IJAS.V2I1.31428","DOIUrl":"https://doi.org/10.13057/IJAS.V2I1.31428","url":null,"abstract":"Surakarta is a cultural city that is now starting to attract domestic and foreign tourists. This makes many tourists visit the city of Surakarta so that it affects the occupancy rate of hotels in Surakarta. The occupancy rate of hotels in Surakarta has fluctuations from each year. The uncertainty of hotel occupancy rates in Surakarta will certainly affect investors to choose policies in the hotel industry so that hotel occupancy rates in Surakarta City need to be estimated for the next year. In this study, the Autoregressive Integrated Moving Average (ARIMA) method was used to forecast hotel occupancy rates in Surakarta from January to May 2018. By using the best model IMA (1.1), it was concluded that the occupancy rate of three-star Surakarta hotels increased every the month.Keywords : occupancy rate of hotel, forecasting, ARIMA.","PeriodicalId":112023,"journal":{"name":"Indonesian Journal of Applied Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121177332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Classification of Human Development Index Using K-Means 基于k均值的人类发展指数分类
Indonesian Journal of Applied Statistics Pub Date : 2019-07-05 DOI: 10.13057/IJAS.V2I1.28566
Retno Tri Vulandari, S. Siswanti, Andriani Kusumaningrum Kusumawijaya, Kumaratih Sandradewi
{"title":"Classification of Human Development Index Using K-Means","authors":"Retno Tri Vulandari, S. Siswanti, Andriani Kusumaningrum Kusumawijaya, Kumaratih Sandradewi","doi":"10.13057/IJAS.V2I1.28566","DOIUrl":"https://doi.org/10.13057/IJAS.V2I1.28566","url":null,"abstract":"Human development progress in Central Java. It is characterized by a continued rise in the human development index (HDI) of Central Java. HDI is an important indicator for measuring success in the effort to build the quality of human life. HDI explains how residents can access the development results in obtaining a long and healthy life, knowledge, education, decent standard of living and so on. HDI is affected by four factors, namely life expectancy, expected years of schooling, means years of schooling, and expenditure per capita. Currently the Central bureau of statistics do grouping HDI, using calculation formula then known how the value HDI each regency or city in Central Java. In this research we classified the regency or city in Central Java based on the HDI be high, middle, and under estimate area. We used cluster analysis. Cluster analysis is a multivariate technique which has the main purpose to classify objects based on their characteristics. Cluster analysis classifies the object, so that each object that has similar characteristics to be clumped into a single cluster (group). One of the cluster analysis method is k-means. The result of this research, there are three groups, high estimate area, middle estimate area, and under estimate area. The first group or the under estimate area contained 12 regencies, namely Cilacap, Purbalingga, Purworejo, Wonosobo, Grobogan, Blora, Rembang, Pati, Jepara, Demak, Pekalongan, and Brebes. The second group or the middle estimate area contained 8 regencies, namely Banjarnegara, Kebumen, Magelang, Temanggung, Wonogiri, Batang, Pemalang, and Tegal. The third group or the high estimate area contained 11 regencies, namely Banyumas, Kudus, Boyolali, Klaten, Sukoharjo, Karanganyar, Sragen, Semarang, Kendal, Surakarta, and Salatiga.Keywords : cluster analysis, k-means, the human development index.","PeriodicalId":112023,"journal":{"name":"Indonesian Journal of Applied Statistics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122691882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Faktor-Faktor yang Mempengaruhi Kriminalitas di Indonesia Tahun 2011-2016 dengan Regresi Data Panel 2016年至2016年影响印尼犯罪的因素与面板数据回归有关
Indonesian Journal of Applied Statistics Pub Date : 2019-07-05 DOI: 10.13057/IJAS.V2I1.27932
Kosmaryati Kosmaryati, Chandra Arinda Handayani, Refinanda Nur Isfahani, Edy Widodo
{"title":"Faktor-Faktor yang Mempengaruhi Kriminalitas di Indonesia Tahun 2011-2016 dengan Regresi Data Panel","authors":"Kosmaryati Kosmaryati, Chandra Arinda Handayani, Refinanda Nur Isfahani, Edy Widodo","doi":"10.13057/IJAS.V2I1.27932","DOIUrl":"https://doi.org/10.13057/IJAS.V2I1.27932","url":null,"abstract":"<p>Criminality in Indonesia is increasing every year, therefore an effort is needed to reduce criminality in Indonesia, one of which can be used by knowing which factors influence the increase of criminality. This paper discusses the factors that influence criminality by using panel data regression analysis. Unemployment, domestic violence cases, narcotics cases, embezzlement cases, and fraud cases have positive effect on the amount of criminality with <em>R</em><em><sup>2</sup></em> of 0,85823 or 85,823%.</p><p><strong>Keywords</strong><strong> : </strong>panel regression analysis, crime, Indonesia</p>","PeriodicalId":112023,"journal":{"name":"Indonesian Journal of Applied Statistics","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131386433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Pemodelan Indeks Pembangunan Manusia (IPM) Metode Baru Menurut Provinsi Tahun 2015 Menggunakan Geographically Weighted Regression (GWR)
Indonesian Journal of Applied Statistics Pub Date : 2019-07-05 DOI: 10.13057/IJAS.V2I1.26170
Akbar Maulana, Renny Meilawati, Vita Widiastuti
{"title":"Pemodelan Indeks Pembangunan Manusia (IPM) Metode Baru Menurut Provinsi Tahun 2015 Menggunakan Geographically Weighted Regression (GWR)","authors":"Akbar Maulana, Renny Meilawati, Vita Widiastuti","doi":"10.13057/IJAS.V2I1.26170","DOIUrl":"https://doi.org/10.13057/IJAS.V2I1.26170","url":null,"abstract":"The Human Development Index (HDI) is a parameter of quality of life for an area. The HDI explains how residents can access the results of development in obtaining income, health and education. One method that can be used to find out the factors that influence the human development index in modeling is regression analysis of ordinary least square (OLS). In the Human Development Index data, there is a dependency between measuring data and the location of a region. Therefore, spatial regression analysis can be used in this study. The local form of spatial regression analysis is geographically weighted regression (GWR). GWR shows the existence of spatial heterogeneity (location). This study compares between OLS regression and GWR in the new human development index method by province in 2015. In the GWR model we use fixed Gaussian kernel and kernel fixed bisquare as weighted function. The optimal bandwidth value is obtained by minimizing the cross validation (CV) and Akaike information criterion (AIC) coefficients. The results showed that the GWR model with Gaussian kernel function is better than GWR with bisquare kernel function and OLS model.Keywords: human development index, ordinary least square, geographically weighted regression, kernel fixed Gaussian,  kernel fixed bisquare","PeriodicalId":112023,"journal":{"name":"Indonesian Journal of Applied Statistics","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131177952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Uji Asumsi Proportional Hazard pada Faktor yang Mempengaruhi Waktu Tahan Hidup Pasien Kanker Paru 测试影响肺癌患者寿命的比例假设
Indonesian Journal of Applied Statistics Pub Date : 2019-03-13 DOI: 10.13057/IJAS.V1I2.26496
Elnatan Dimas Aditya, S. Handajani, Riri Setiyowati
{"title":"Uji Asumsi Proportional Hazard pada Faktor yang Mempengaruhi Waktu Tahan Hidup Pasien Kanker Paru","authors":"Elnatan Dimas Aditya, S. Handajani, Riri Setiyowati","doi":"10.13057/IJAS.V1I2.26496","DOIUrl":"https://doi.org/10.13057/IJAS.V1I2.26496","url":null,"abstract":"Lung cancer is the disease that its death risk always increase, because of that the survival time of its patient is interesting to be researched. One of the method that can be used to research survival time of lung cancer patient is Cox regression. It has an assumption that called proportional hazard assumption. Proportional hazard assumption can be tested by graph method that is log-log graph, but the result is only used as temporary suspicion. For a better result, the goodness of fit test can be used by calculate the correlation between rank of survival time and schoenfeld residual. The result is age variabel doesn’t satisfy proportional hazard assumption. Keywords : cox regression; proportional hazard assumption; log-log graph; goodness of fit test.","PeriodicalId":112023,"journal":{"name":"Indonesian Journal of Applied Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116535906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信