Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier

Lingga Aji Andika, Pratiwi Amalia Nur Azizah, Respatiwulan Respatiwulan
{"title":"Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier","authors":"Lingga Aji Andika, Pratiwi Amalia Nur Azizah, Respatiwulan Respatiwulan","doi":"10.13057/IJAS.V2I1.29998","DOIUrl":null,"url":null,"abstract":"Indonesia is one of the countries that adheres to a democratic system. In the course of a democratic system it is marked by periodic general elections. In 2019 Indonesia held a general election simultaneously to elect the President, DPR, DPRD and DPD. After the election, a lot of opinion arise within the community, including on social media twitter. One of the topics discussed was the results of the quick count of the presidential election. Therefore, a method that can be used to analyze sentiment from the quick count opinion is needed, that is naive Bayes method. The aims of this study are to find the best naive Bayes model and to classify sentiments. The result shows the best accuracy of 82.90% with α = 0.05. The classification obtained is 34.5% (471) positive tweets and 65.5% (895) negative tweets on the results of the quick count.Keywords : sentiment analysis, naive Bayes classifier, elections, quick count","PeriodicalId":112023,"journal":{"name":"Indonesian Journal of Applied Statistics","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13057/IJAS.V2I1.29998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Indonesia is one of the countries that adheres to a democratic system. In the course of a democratic system it is marked by periodic general elections. In 2019 Indonesia held a general election simultaneously to elect the President, DPR, DPRD and DPD. After the election, a lot of opinion arise within the community, including on social media twitter. One of the topics discussed was the results of the quick count of the presidential election. Therefore, a method that can be used to analyze sentiment from the quick count opinion is needed, that is naive Bayes method. The aims of this study are to find the best naive Bayes model and to classify sentiments. The result shows the best accuracy of 82.90% with α = 0.05. The classification obtained is 34.5% (471) positive tweets and 65.5% (895) negative tweets on the results of the quick count.Keywords : sentiment analysis, naive Bayes classifier, elections, quick count
在Twitter社交媒体上,人们对2019年印尼总统选举的快速统计结果进行了情感分析,该结果使用的是天真的Bayes Classifier方法
印度尼西亚是坚持民主制度的国家之一。在民主制度的进程中,它的特点是定期举行大选。2019年,印度尼西亚同时举行大选,选举总统、人民代表大会、人民代表大会和人民代表大会。选举结束后,社区内出现了很多意见,包括社交媒体twitter。讨论的话题之一是总统选举的快速点票结果。因此,需要一种能够从快速计数意见中分析情感的方法,即朴素贝叶斯方法。本研究的目的是寻找最佳的朴素贝叶斯模型并对情绪进行分类。结果表明,在α = 0.05时,准确度为82.90%。根据快速计数的结果,得到的分类为34.5%(471条)正面推文和65.5%(895条)负面推文。关键词:情感分析,朴素贝叶斯分类器,选举,快速计数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信