Pemodelan Indeks Pembangunan Manusia (IPM) Metode Baru Menurut Provinsi Tahun 2015 Menggunakan Geographically Weighted Regression (GWR)

Akbar Maulana, Renny Meilawati, Vita Widiastuti
{"title":"Pemodelan Indeks Pembangunan Manusia (IPM) Metode Baru Menurut Provinsi Tahun 2015 Menggunakan Geographically Weighted Regression (GWR)","authors":"Akbar Maulana, Renny Meilawati, Vita Widiastuti","doi":"10.13057/IJAS.V2I1.26170","DOIUrl":null,"url":null,"abstract":"The Human Development Index (HDI) is a parameter of quality of life for an area. The HDI explains how residents can access the results of development in obtaining income, health and education. One method that can be used to find out the factors that influence the human development index in modeling is regression analysis of ordinary least square (OLS). In the Human Development Index data, there is a dependency between measuring data and the location of a region. Therefore, spatial regression analysis can be used in this study. The local form of spatial regression analysis is geographically weighted regression (GWR). GWR shows the existence of spatial heterogeneity (location). This study compares between OLS regression and GWR in the new human development index method by province in 2015. In the GWR model we use fixed Gaussian kernel and kernel fixed bisquare as weighted function. The optimal bandwidth value is obtained by minimizing the cross validation (CV) and Akaike information criterion (AIC) coefficients. The results showed that the GWR model with Gaussian kernel function is better than GWR with bisquare kernel function and OLS model.Keywords: human development index, ordinary least square, geographically weighted regression, kernel fixed Gaussian,  kernel fixed bisquare","PeriodicalId":112023,"journal":{"name":"Indonesian Journal of Applied Statistics","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13057/IJAS.V2I1.26170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Human Development Index (HDI) is a parameter of quality of life for an area. The HDI explains how residents can access the results of development in obtaining income, health and education. One method that can be used to find out the factors that influence the human development index in modeling is regression analysis of ordinary least square (OLS). In the Human Development Index data, there is a dependency between measuring data and the location of a region. Therefore, spatial regression analysis can be used in this study. The local form of spatial regression analysis is geographically weighted regression (GWR). GWR shows the existence of spatial heterogeneity (location). This study compares between OLS regression and GWR in the new human development index method by province in 2015. In the GWR model we use fixed Gaussian kernel and kernel fixed bisquare as weighted function. The optimal bandwidth value is obtained by minimizing the cross validation (CV) and Akaike information criterion (AIC) coefficients. The results showed that the GWR model with Gaussian kernel function is better than GWR with bisquare kernel function and OLS model.Keywords: human development index, ordinary least square, geographically weighted regression, kernel fixed Gaussian,  kernel fixed bisquare
人类发展指数(HDI)是衡量一个地区生活质量的指标。人类发展指数解释了居民如何在获得收入、健康和教育方面获得发展成果。一般最小二乘回归分析(OLS)是在建模中找出影响人类发展指数的因素的一种方法。在人类发展指数数据中,测量数据与区域位置之间存在依赖关系。因此,本研究可以采用空间回归分析。空间回归分析的局部形式是地理加权回归(GWR)。GWR表现出空间异质性(区位)。本文比较了2015年各省新人类发展指数方法中OLS回归与GWR的差异。在GWR模型中,我们使用固定高斯核和核固定双方作为加权函数。通过最小化交叉验证(CV)和赤池信息准则(AIC)系数,得到最优带宽值。结果表明,采用高斯核函数的GWR模型优于采用双平方核函数和OLS模型的GWR模型。关键词:人类发展指数,普通最小二乘,地理加权回归,核固定高斯,核固定二乘
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信