Current Advances in Chemistry and Biochemistry Vol. 9最新文献

筛选
英文 中文
Biomedical Applications of Some Schiff Base Metal Complexes Containing Imidazole/Thiophene Derivatives 一些含咪唑/噻吩衍生物的希夫碱金属配合物的生物医学应用
Current Advances in Chemistry and Biochemistry Vol. 9 Pub Date : 2021-07-08 DOI: 10.9734/bpi/cacb/v9/2887f
S. Joseph, R. S. Joseyphus
{"title":"Biomedical Applications of Some Schiff Base Metal Complexes Containing Imidazole/Thiophene Derivatives","authors":"S. Joseph, R. S. Joseyphus","doi":"10.9734/bpi/cacb/v9/2887f","DOIUrl":"https://doi.org/10.9734/bpi/cacb/v9/2887f","url":null,"abstract":"Imidazole-2-carboxaldehyde was condensed with 2-amino-3-carboxyethyl-4,5-dimethyl thiophene in 1:1 molar ratio yielded Schiff base. CoII, NiII, CuII and ZnII complexes of Schiff base were synthesized and characterized. The geometry exhibited by the complexes was proposed using magnetic and electronic spectral data. Thermal analysis was carried out to ascertain the thermal stability of the compounds. The fluorescence spectral analysis were investigated at different solvents for the Schiff base and its CuII complex. Using powder XRD measurements, the grain size was determined. The SEM images indicate the surface morphology of the complexes. The antibacterial and antifungal activities were screened by disk diffusion method designed by Kirby-Bauer. In vitro anticancer studies were carried out, by MTT assay for human cervical carcinoma cell line.","PeriodicalId":10902,"journal":{"name":"Current Advances in Chemistry and Biochemistry Vol. 9","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84081088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inference of Structure and Dynamic Order of Formation of Multimeric Protein Complexes 多聚体蛋白复合物的结构和动态形成顺序的推断
Current Advances in Chemistry and Biochemistry Vol. 9 Pub Date : 2021-07-08 DOI: 10.9734/bpi/cacb/v9/9982d
C. D. Carpio, E. Ichiishi
{"title":"Inference of Structure and Dynamic Order of Formation of Multimeric Protein Complexes","authors":"C. D. Carpio, E. Ichiishi","doi":"10.9734/bpi/cacb/v9/9982d","DOIUrl":"https://doi.org/10.9734/bpi/cacb/v9/9982d","url":null,"abstract":"Automatic prediction of bi-molecular protein complexes and biomolecular interactions has been the object of a diversity of computational studies and with different degrees of success. Extrapolating these methodologies to treat the harder problem of computing the structure and function of multi-meric proteins, however, poses several complications. The most relevant stems from the combinatorial aspect of the problem, which involves the prediction of the dynamic order in which the subunits interact (the interaction path). A second, not less important, is the size of these molecules which account for thousands of atoms, and thus require sophisticated computational platforms. \u0000In this chapter we entail the efforts of a recent study oriented to the automatic elucidation of protein multimeric configurations and thereby the dynamic order of multimeric protein complex formation. The study is namely based on the development of a genuine approach that requires as unique information that of the isolated structures of each of the subunits constituting the multimeric complex. The method is based on an original protocol we have implemented to infer interaction sites on protein surfaces. Hitherto attempts to solve this relevant problem in protein function elucidation have been limited to three body dockings using conventional docking algorithms and molecular dynamic simulations. Here the aim is to infer complex configurations and dynamic orders of formation from the monomers known to constitute a multimeric complex unveiling active regions on the surfaces of the proteins and intermediate complexes. We present three case studies and show that important insights into the formation mechanisms of this type of multimeric complexes can be gained from the analysis of the surface characteristics of the interacting monomers which can facilitate, in a further stage, the docking and energy calculations involved in the prediction of the configurations of these complexes.","PeriodicalId":10902,"journal":{"name":"Current Advances in Chemistry and Biochemistry Vol. 9","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88492625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信