Current gene therapy最新文献

筛选
英文 中文
Direct Bilirubin, but not Indirect Bilirubin, is Associated with Short-term Adverse Events in HFpEF. 直接胆红素(而非间接胆红素)与高胆红素血症患者的短期不良事件有关。
IF 3.6 4区 医学
Current gene therapy Pub Date : 2024-01-01 DOI: 10.2174/0115665232273115240102043640
Sunying Wang, Yan Chen, Hanghao Ma, Yuwei Wang, Manqing Luo, Xianwei Xie, Qingyong Yang, Kaijin Lin, Meihua Lin, Lin Lin, Ping Chen, Qiaowen Zheng, Fuqing Sun
{"title":"Direct Bilirubin, but not Indirect Bilirubin, is Associated with Short-term Adverse Events in HFpEF.","authors":"Sunying Wang, Yan Chen, Hanghao Ma, Yuwei Wang, Manqing Luo, Xianwei Xie, Qingyong Yang, Kaijin Lin, Meihua Lin, Lin Lin, Ping Chen, Qiaowen Zheng, Fuqing Sun","doi":"10.2174/0115665232273115240102043640","DOIUrl":"10.2174/0115665232273115240102043640","url":null,"abstract":"<p><strong>Objective: </strong>Abnormal live function tests have been identified as independent risk factors for ominous prognosis in patients with heart failure. However, most of the previous studies have failed to determine the contribution of direct bilirubin (DBIL) and indirect bilirubin (IBIL) separately. Hence, we aimed to explore whether DBIL or IBIL is correlated with the prognosis of heart failure with preserved ejection fraction (HFpEF).</p><p><strong>Methods: </strong>A total of 19837 patients were hospitalized for HFpEF between January 2012 and January 2022 in Fuqing City Hospital affiliated with Fujian Medical University. The primary endpoint was in-hospital all-cause mortality. Secondary endpoints included in-hospital cardiovascular mortality and 30-day re-admission for heart failure.</p><p><strong>Results: </strong>Univariable analysis indicated that patients with elevated DBIL or IBIL were exposed to a higher risk of mortality and re-admission. However, in multivariable models, both ln-transformed DBIL and TBIL, but not IBIL, were independent risk factors for in-hospital all-cause mortality (hazard ratio (HR)=1.796, 95% confidential interval (CI)=1.477-2.183, P<0.001; HR=1.854, 95% CI=1.461-2.352, P.0.001; HR=1.161, 95% CI=0.959-1.407, P=0.126) and in-hospital cardiovascular mortality (HR=1.831, 95% CI=1.345-2.492, P.0.001; HR=1.899, 95% CI=1.300-2.773, P=0.001; HR=1.145, 95% CI=0.841-1.561, P=0.389). Only DBIL remained independently associated with 30-day readmission for heart failure (HR=1.361, 95% CI=1.036-1.787, P=0.027). Adding ln-transformed DBIL to model 1 increased its discriminatory capacity (C-statistic: 0.851 to 0.869, respectively), whereas adding ln-transformed IBIL yielded little increment (C-statistic: 0.851 to 0.852, respectively).</p><p><strong>Conclusion: </strong>DBIL, but not IBIL, was associated with short-term ominous prognosis in patients with HFpEF. Hence, DBIL may be the superior predictor for prognosis in HFpEF.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139680754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene Therapy for Skin Aging. 皮肤老化基因疗法。
IF 3.8 4区 医学
Current gene therapy Pub Date : 2024-01-01 DOI: 10.2174/0115665232286489240320051925
Fawzy A Saad
{"title":"Gene Therapy for Skin Aging.","authors":"Fawzy A Saad","doi":"10.2174/0115665232286489240320051925","DOIUrl":"10.2174/0115665232286489240320051925","url":null,"abstract":"<p><p>Extrinsic and intrinsic factors contribute to skin aging; nonetheless, they are intertwined. Moreover, intrinsic skin aging mirrors age-related declines in the entire human body's internal organs. There is evidence that skin appearance is an indicator of the general health of somebody or a visual certificate of health. Earlier, it was apparent that the intrinsic factors are unalterable, but the sparkling of skin aging gene therapy on the horizon is changing this narrative. Skin aging gene therapy offers tools for skin rejuvenation, natural beauty restoration, and therapy for diseases affecting the entire skin. However, skin aging gene therapy is an arduous and sophisticated task relying on precise interim stimulation of telomerase to extend telomeres and wend back the biological clock in the hopes to find the fountain of youth, while preserving cells innate biological features. Finding the hidden fountain of youth will be a remarkable discovery for promoting aesthetics medicine, genecosmetics, and healthy aging. Caloric restriction offers ultimate health benefits and a reproducible way to promote longevity in mammals, while delaying age-related diseases. Moreover, exercise further enhances these health benefits. This article highlights the potential of skin aging gene therapy and foretells the emerging dawn of the genecosmetics era.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140287092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in CRISPR-Based Therapies for Genetic Modulation in Neurodegenerative Disorders. 基于 CRISPR 的神经退行性疾病基因调控疗法的进展。
IF 3.8 4区 医学
Current gene therapy Pub Date : 2024-01-01 DOI: 10.2174/0115665232292246240426125504
Bharat Bhushan, Kuldeep Singh, Shivendra Kumar, Anjali Bhardwaj
{"title":"Advancements in CRISPR-Based Therapies for Genetic Modulation in Neurodegenerative Disorders.","authors":"Bharat Bhushan, Kuldeep Singh, Shivendra Kumar, Anjali Bhardwaj","doi":"10.2174/0115665232292246240426125504","DOIUrl":"10.2174/0115665232292246240426125504","url":null,"abstract":"<p><p>Neurodegenerative disorders pose significant challenges in the realm of healthcare, as these conditions manifest in complex, multifaceted ways, often attributed to genetic anomalies. With the emergence of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology, a new frontier has been unveiled in the quest for targeted, precise genetic manipulation. This abstract explores the recent advancements and potential applications of CRISPR-based therapies in addressing genetic components contributing to various neurodegenerative disorders. The review delves into the foundational principles of CRISPR technology, highlighting its unparalleled ability to edit genetic sequences with unprecedented precision. In addition, it talks about the latest progress in using CRISPR to target specific genetic mutations linked to neurodegenerative diseases like Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Parkinson's disease. It talks about the most important studies and trials that show how well and safely CRISPR-based therapies work. This shows how this technology can change genetic variants that cause diseases. Notably, the discussion emphasizes the challenges and ethical considerations associated with the implementation of CRISPR in clinical settings, including off-target effects, delivery methods, and long-term implications. Furthermore, the article explores the prospects and potential hurdles in the widespread application of CRISPR technology for treating neurodegenerative disorders. It touches upon the need for continued research, improved delivery mechanisms, and ethical frameworks to ensure responsible and equitable access to these groundbreaking therapies.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic Potential of CRISPR/Cas in Hashimoto's Thyroiditis: A Comprehensive Review. CRISPR/Cas 在桥本氏甲状腺炎中的治疗潜力:全面回顾。
IF 3.8 4区 医学
Current gene therapy Pub Date : 2024-01-01 DOI: 10.2174/0115665232266508231210154930
Apoorva Upreti, Sayali Mukherjee
{"title":"Therapeutic Potential of CRISPR/Cas in Hashimoto's Thyroiditis: A Comprehensive Review.","authors":"Apoorva Upreti, Sayali Mukherjee","doi":"10.2174/0115665232266508231210154930","DOIUrl":"10.2174/0115665232266508231210154930","url":null,"abstract":"<p><p>Hashimoto's thyroiditis (HT) is a commonly occurring illness of autoimmune endocrine origin. It is usually present in the pediatric age group along with other well-known diseases, such as type 1 insulin-dependent diabetes. The defining feature of this disease is the immune-- mediated attack on the thyroid gland resulting in the destruction of thyroid tissues and cells. Given that HT frequently affects family members, it is well-recognized that individuals are genetically predisposed to this disease. Patients with HT also display a significantly increased risk for several different cancers, justifying the eminent need for the development of therapies for managing and treating HT. Gene editing has made several advancements in the field of molecular biology and has turned out to become a promising approach to correct several autoimmune diseases. Currently, CRISPR/Cas, a nuclease-based editing technique, is publicized as a promising tool for curing several genetic diseases and cancers. However, very limited research has been conducted as of now on autoimmune disease management and cure <i>via</i> CRISPR/Cas technique. This review provides an account of the potential candidate genes associated with Hashimoto's thyroiditis, and only a few animal and human models have been generated <i>via</i> the CRISPR/Cas gene editing technique. Mouse models of autoimmune thyroiditis generated through the CRISPR/Cas gene editing technique by targeting the candidate genes will provide us with a deeper insight into the pathophysiology of HT and further pave the way for the immunomodulation of HT <i>via</i> gene editing.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139680757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR-Based Therapies: Revolutionizing Drug Development and Precision Medicine. 基于 CRISPR 的疗法:革新药物开发和精准医疗。
IF 3.8 4区 医学
Current gene therapy Pub Date : 2024-01-01 DOI: 10.2174/0115665232275754231204072320
Dilip Kumar Chanchal, Jitendra Singh Chaudhary, Pushpendra Kumar, Neha Agnihotri, Prateek Porwal
{"title":"CRISPR-Based Therapies: Revolutionizing Drug Development and Precision Medicine.","authors":"Dilip Kumar Chanchal, Jitendra Singh Chaudhary, Pushpendra Kumar, Neha Agnihotri, Prateek Porwal","doi":"10.2174/0115665232275754231204072320","DOIUrl":"10.2174/0115665232275754231204072320","url":null,"abstract":"<p><p>With the discovery of CRISPR-Cas9, drug development and precision medicine have undergone a major change. This review article looks at the new ways that CRISPR-based therapies are being used and how they are changing the way medicine is done. CRISPR technology's ability to precisely and flexibly edit genes has opened up new ways to find, validate, and develop drug targets. Also, it has made way for personalized gene therapies, precise gene editing, and advanced screening techniques, all of which hold great promise for treating a wide range of diseases. In this article, we look at the latest research and clinical trials that show how CRISPR could be used to treat genetic diseases, cancer, infectious diseases, and other hard-to-treat conditions. However, ethical issues and problems with regulations are also discussed in relation to CRISPR-based therapies, which shows how important it is to use them safely and responsibly. As CRISPR continues to change how drugs are made and used, this review shines a light on the amazing things that have been done and what the future might hold in this rapidly changing field.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139680753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative Genoceuticals in Human Gene Therapy Solutions: Challenges and Safe Clinical Trials of Orphan Gene Therapy Products. 人类基因疗法解决方案中的创新基因药物:孤儿基因治疗产品的挑战和安全临床试验。
IF 3.6 4区 医学
Current gene therapy Pub Date : 2024-01-01 DOI: 10.2174/1566523223666230911120922
Rakesh Sharma
{"title":"Innovative Genoceuticals in Human Gene Therapy Solutions: Challenges and Safe Clinical Trials of Orphan Gene Therapy Products.","authors":"Rakesh Sharma","doi":"10.2174/1566523223666230911120922","DOIUrl":"10.2174/1566523223666230911120922","url":null,"abstract":"<p><p>The success of gene therapy attempts is controversial and inconclusive. Currently, it is popular among the public, the scientific community, and manufacturers of Gene Therapy Medical Products. In the absence of any remedy or treatment options available for untreatable inborn metabolic orphan or genetic diseases, cancer, or brain diseases, gene therapy treatment by genoceuticals and T-cells for gene editing and recovery remains the preferred choice as the last hope. A new concept of \"Genoceutical Gene Therapy\" by using orphan 'nucleic acid-based therapy' aims to introduce scientific principles of treating acquired tissue damage and rare diseases. These Orphan Genoceuticals provide new scope for the 'genodrug' development and evaluation of genoceuticals and gene products for ideal 'gene therapy' use in humans with marketing authorization application (MAA). This perspective study focuses on the quality control, safety, and efficacy requirements of using 'nucleic acid-based and human cell-based new gene therapy' genoceutical products to set scientific advice on genoceutical-based 'orphan genodrug' design for clinical trials as per Western and European guidelines. The ethical Western FDA and European EMA guidelines suggest stringent legal and technical requirements on genoceutical medical products or orphan genodrug use for other countries to frame their own guidelines. The introduction section proposes lessknown 'orphan drug-like' properties of modified RNA/DNA, human cell origin gene therapy medical products, and their transgene products. The clinical trial section explores the genoceutical sources, FDA/EMA approvals for genoceutical efficacy criteria with challenges, and ethical guidelines relating to gene therapy of specific rare metabolic, cancer and neurological diseases. The safety evaluation of approved genoceuticals or orphan drugs is highlighted with basic principles and 'genovigilance' requirements (to observe any adverse effects, side effects, developed signs/symptoms) to establish their therapeutic use. Current European Union and Food and Drug Administration guidelines continuously administer fast-track regulatory legal framework from time to time, and they monitor the success of gene therapy medical product efficacy and safety. Moreover, new ethical guidelines on 'orphan drug-like genoceuticals' are updated for biodistribution of the vector, genokinetics studies of the transgene product, requirements for efficacy studies in industries for market authorization, and clinical safety endpoints with their specific concerns in clinical trials or public use.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10223821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Retrospective Analysis of the Lauren Classification in the Choice of XELOX or SOX as an Adjuvant Chemotherapy for Gastric Cancer. 劳伦分类法在选择XELOX或SOX作为癌症辅助化疗中的回顾性分析。
IF 3.6 4区 医学
Current gene therapy Pub Date : 2024-01-01 DOI: 10.2174/0115665232247694230921060213
Ke Wang, Yuanyuan Yu, Jian Zhao, Qianhao Meng, Chang Xu, Jing Ren, Yanqiao Zhang, Yusheng Wang, Guangyu Wang
{"title":"A Retrospective Analysis of the Lauren Classification in the Choice of XELOX or SOX as an Adjuvant Chemotherapy for Gastric Cancer.","authors":"Ke Wang, Yuanyuan Yu, Jian Zhao, Qianhao Meng, Chang Xu, Jing Ren, Yanqiao Zhang, Yusheng Wang, Guangyu Wang","doi":"10.2174/0115665232247694230921060213","DOIUrl":"10.2174/0115665232247694230921060213","url":null,"abstract":"<p><strong>Background: </strong>We aim to retrospectively explore the guiding value of the Lauren classification for patients who have undergone D2 gastrectomy to choose oxaliplatin plus capecitabine (XELOX) or oxaliplatin plus S-1 (SOX) as a further systemic treatment after the operation.</p><p><strong>Methods: </strong>We collected data of 406 patients with stage III gastric cancer(GC)after radical D2 resection and regularly received XELOX or SOX adjuvant treatment after surgery and followed them for at least five years. According to the Lauren classification, we separated patients out into intestinal type (IT) GC together with non-intestinal type(NIT) GC. According to the chemotherapy regimen, we separated patients into the SOX group together with the XELOX group.</p><p><strong>Results: </strong>Among non-intestinal type patients, the 3-year DFS rates in the SOX group and the XELOX group were 72.5%, respectively; 54.5% (P=0.037); The 5-year OS rates were 66.8% and 51.8% respectively (P=0.038), both of which were statistically significant.</p><p><strong>Conclusion: </strong>The patients of non-intestinal type GC may benefit from the SOX regimen. Differences were counted without being statistically significant with intestinal-type GC in the SOX or XELOX groups.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41111447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-coding RNAs in Regulation of Protein Aggregation and Clearance Pathways: Current Perspectives Towards Alzheimer's Research and Therapy. 调控蛋白质聚集和清除途径的非编码 RNA:阿尔茨海默氏症研究与治疗的当前视角》(Current Perspectives Towards Alzheimer's Research and Therapy.
IF 3.6 4区 医学
Current gene therapy Pub Date : 2024-01-01 DOI: 10.2174/1566523223666230731093030
Sonali Sundram, Neerupma Dhiman, Rishabha Malviya, Rajendra Awasthi
{"title":"Non-coding RNAs in Regulation of Protein Aggregation and Clearance Pathways: Current Perspectives Towards Alzheimer's Research and Therapy.","authors":"Sonali Sundram, Neerupma Dhiman, Rishabha Malviya, Rajendra Awasthi","doi":"10.2174/1566523223666230731093030","DOIUrl":"10.2174/1566523223666230731093030","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the leading cause of dementia, affecting approximately 45.0 million people worldwide and ranking as the fifth leading cause of mortality. AD is identified by neurofibrillary tangles (NFTs), which include abnormally phosphorylated tau-protein and amyloid protein (amyloid plaques). Peptide dysregulation is caused by an imbalance between the production and clearance of the amyloid-beta (Aβ) and NFT. AD begins to develop when these peptides are not cleared from the body. As a result, understanding the processes that control both normal and pathological protein recycling in neuronal cells is critical. Insufficient Aβ and NFT clearance are important factors in the development of AD. Autophagy, lysosomal dysfunction, and ubiquitin-proteasome dysfunction have potential roles in the pathogenesis of many neurodegenerative disorders, particularly in AD. Modulation of these pathways may provide a novel treatment strategy for AD. Non-coding RNAs (ncRNAs) have recently emerged as important biological regulators, with particular relevance to the emergence and development of neurodegenerative disorders such as AD. ncRNAs can be used as potential therapeutic targets and diagnostic biomarkers due to their critical regulatory functions in several biological processes involved in disease development, such as the aggregation and accumulation of Aβ and NFT. It is evident that ncRNAs play a role in the pathophysiology of AD. In this communication, we explored the link between ncRNAs and AD and their regulatory mechanisms that may help in finding new therapeutic targets and AD medications.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9898280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vector-Mediated Delivery of Transgenes and RNA Interference-Based Gene Silencing Sequences to Astrocytes for Disease Management: Advances and Prospectives. 载体介导的向星形胶质细胞递送转基因和基于RNA干扰的基因沉默序列用于疾病管理:进展和展望。
IF 3.6 4区 医学
Current gene therapy Pub Date : 2024-01-01 DOI: 10.2174/0115665232264527231013072728
Deepika Yadav, Rishabha Malviya
{"title":"Vector-Mediated Delivery of Transgenes and RNA Interference-Based Gene Silencing Sequences to Astrocytes for Disease Management: Advances and Prospectives.","authors":"Deepika Yadav, Rishabha Malviya","doi":"10.2174/0115665232264527231013072728","DOIUrl":"10.2174/0115665232264527231013072728","url":null,"abstract":"<p><p>Astrocytes are a type of important glial cell in the brain that serve crucial functions in regulating neuronal activity, facilitating communication between neurons, and keeping everything in balance. In this abstract, we explore current methods and future approaches for using vectors to precisely target astrocytes in the fight against various illnesses. In order to deliver therapeutic cargo selectively to astrocytes, researchers have made tremendous progress by using viral vectors such as adeno-associated viruses (AAVs) and lentiviruses. It has been established that engineered viral vectors are capable of either crossing the blood-brain barrier (BBB) or being delivered intranasally, which facilitates their entrance into the brain parenchyma. These vectors are able to contain transgenes that code for neuroprotective factors, synaptic modulators, or anti-inflammatory medicines, which pave the way for multiple approaches to disease intervention. Strategies based on RNA interference (RNAi) make vector-mediated astrocyte targeting much more likely to work. Small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) are two types of RNA that can be made to silence disease-related genes in astrocytes. Vector-mediated delivery in conjunction with RNAi techniques provides a powerful toolkit for investigating the complex biological pathways that contribute to disease development. However, there are still a number of obstacles to overcome in order to perfect the specificity, safety, and duration of vector-mediated astrocyte targeting. In order to successfully translate research findings into clinical practise, it is essential to minimise off-target effects and the risk of immunogenicity. To demonstrate the therapeutic effectiveness of these strategies, rigorous preclinical investigation and validation are required.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71421510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of SARS-CoV-2 Infection Phosphorylation Sites and Associations of these Modifications with Lung Cancer Development. SARS-CoV-2感染磷酸化位点的预测及其与肺癌发展的关系
IF 3.6 4区 医学
Current gene therapy Pub Date : 2024-01-01 DOI: 10.2174/0115665232268074231026111634
Wei Li, Gen Li, Yuzhi Sun, Liyuan Zhang, Xinran Cui, Yuran Jia, Tianyi Zhao
{"title":"Prediction of SARS-CoV-2 Infection Phosphorylation Sites and Associations of these Modifications with Lung Cancer Development.","authors":"Wei Li, Gen Li, Yuzhi Sun, Liyuan Zhang, Xinran Cui, Yuran Jia, Tianyi Zhao","doi":"10.2174/0115665232268074231026111634","DOIUrl":"10.2174/0115665232268074231026111634","url":null,"abstract":"<p><strong>Introduction: </strong>Since the emergence of SARS-CoV-2 viruses, multiple mutant strains have been identified. Infection with SARS-CoV-2 virus leads to alterations in host cell phosphorylation signal, which systematically modulates the immune response.</p><p><strong>Methods: </strong>Identification and analysis of SARS-CoV-2 virus infection phosphorylation sites enable insight into the mechanisms of viral infection and effects on host cells, providing important fundamental data for the study and development of potent drugs for the treatment of immune inflammatory diseases. In this paper, we have analyzed the SARS-CoV-2 virus-infected phosphorylation region and developed a transformer-based deep learning-assisted identification method for the specific identification of phosphorylation sites in SARS-CoV-2 virus-infected host cells.</p><p><strong>Results: </strong>Furthermore, through association analysis with lung cancer, we found that SARS-CoV-2 infection may affect the regulatory role of the immune system, leading to an abnormal increase or decrease in the immune inflammatory response, which may be associated with the development and progression of cancer.</p><p><strong>Conclusion: </strong>We anticipate that this study will provide an important reference for SARS-CoV-2 virus evolution as well as immune-related studies and provide a reliable complementary screening tool for anti-SARS-CoV-2 virus drug and vaccine design.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92153088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信