Aya Al Othman, Anna Polyanskaya, Mikhail Durymanov
{"title":"人类病毒样蛋白:对基因疗法的影响。","authors":"Aya Al Othman, Anna Polyanskaya, Mikhail Durymanov","doi":"10.2174/0115665232303436240515071754","DOIUrl":null,"url":null,"abstract":"<p><p>An analysis of mammalian genomes has revealed a significant number of DNA sequences with transposon or viral origin. Some of these elements encode functional proteins, repurposed during evolution to play significant physiological roles in certain tissues. Some human virus-like proteins, such as Peg10 and Arc/Arg3.1, structurally demonstrate significant similarity with Gag retroviral proteins, while others, like syncytins-1 and -2, resemble envelope viral proteins. In recent years, it has become clear that these proteins can be exploited for bioengineering 'humanized' capsid particles aimed at targeted mRNA delivery. Realizing this idea could provide efficient virus-like particles for gene therapy and address the problem of viral vector immunogenicity. This review provides an overview of the most-studied human proteins of viral or transposon origin and highlights their biological functions. Additionally, recent advances in exploiting these proteins for targeted mRNA delivery and prospects for their clinical application are discussed.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Virus-Like Proteins: Implications for Gene Therapy.\",\"authors\":\"Aya Al Othman, Anna Polyanskaya, Mikhail Durymanov\",\"doi\":\"10.2174/0115665232303436240515071754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An analysis of mammalian genomes has revealed a significant number of DNA sequences with transposon or viral origin. Some of these elements encode functional proteins, repurposed during evolution to play significant physiological roles in certain tissues. Some human virus-like proteins, such as Peg10 and Arc/Arg3.1, structurally demonstrate significant similarity with Gag retroviral proteins, while others, like syncytins-1 and -2, resemble envelope viral proteins. In recent years, it has become clear that these proteins can be exploited for bioengineering 'humanized' capsid particles aimed at targeted mRNA delivery. Realizing this idea could provide efficient virus-like particles for gene therapy and address the problem of viral vector immunogenicity. This review provides an overview of the most-studied human proteins of viral or transposon origin and highlights their biological functions. Additionally, recent advances in exploiting these proteins for targeted mRNA delivery and prospects for their clinical application are discussed.</p>\",\"PeriodicalId\":10798,\"journal\":{\"name\":\"Current gene therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115665232303436240515071754\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232303436240515071754","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Human Virus-Like Proteins: Implications for Gene Therapy.
An analysis of mammalian genomes has revealed a significant number of DNA sequences with transposon or viral origin. Some of these elements encode functional proteins, repurposed during evolution to play significant physiological roles in certain tissues. Some human virus-like proteins, such as Peg10 and Arc/Arg3.1, structurally demonstrate significant similarity with Gag retroviral proteins, while others, like syncytins-1 and -2, resemble envelope viral proteins. In recent years, it has become clear that these proteins can be exploited for bioengineering 'humanized' capsid particles aimed at targeted mRNA delivery. Realizing this idea could provide efficient virus-like particles for gene therapy and address the problem of viral vector immunogenicity. This review provides an overview of the most-studied human proteins of viral or transposon origin and highlights their biological functions. Additionally, recent advances in exploiting these proteins for targeted mRNA delivery and prospects for their clinical application are discussed.
期刊介绍:
Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases.
Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.