Crystal Research and Technology最新文献

筛选
英文 中文
Highly Accurate Thickness Determination of 2D Materials (Crystal Research and Technology 6/2021) 高精度二维材料厚度测定(晶体研究与技术6/2021)
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2021-06-01 DOI: 10.1002/crat.202170020
{"title":"Highly Accurate Thickness Determination of 2D Materials (Crystal Research and Technology 6/2021)","authors":"","doi":"10.1002/crat.202170020","DOIUrl":"https://doi.org/10.1002/crat.202170020","url":null,"abstract":"","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79938833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Ekkehart Tillmanns (1941 – 2020)
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2021-06-01 DOI: 10.1002/CRAT.202100066
P. Paufler, Dirk C. Meyer
{"title":"Ekkehart Tillmanns (1941 – 2020)","authors":"P. Paufler, Dirk C. Meyer","doi":"10.1002/CRAT.202100066","DOIUrl":"https://doi.org/10.1002/CRAT.202100066","url":null,"abstract":"","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"79 1","pages":"2100066"},"PeriodicalIF":1.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80299332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystallization Behavior and Luminescence of Inkjet Printing CH3NH3PbBr3 喷墨打印CH3NH3PbBr3的结晶行为和发光性能
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2021-05-29 DOI: 10.1002/crat.202100004
Rui Sun, Haixia Li, Yimin Guan, Yong Du, H. Shen, Jiayue Xu
{"title":"Crystallization Behavior and Luminescence of Inkjet Printing CH3NH3PbBr3","authors":"Rui Sun, Haixia Li, Yimin Guan, Yong Du, H. Shen, Jiayue Xu","doi":"10.1002/crat.202100004","DOIUrl":"https://doi.org/10.1002/crat.202100004","url":null,"abstract":"Lead halide perovskites display remarkable optoelectronic properties, like large absorption coefficients, high photoluminescence quantum efficiencies, and long lifetime and diffusion length of photocarriers. This system is easily fabricated using solution processes and inkjet printing is an effective way to prepare halide perovskite films and complex patterns. In this work, the crystallization behaviors of inkjet printing CH3NH3PbBr3 crystals are systematically investigated with varied I− doping, printing times, and solvents. Using N,N‐dimethylformamide (DMF) solvent, CH3NH3PbBr3−xIx (x = 0, 0.14, 0.29, 0.45, 0.59) are printed on the glass and the crystalline grains are developed from the (001) oriented tetragonal in side length of 10–50 µm to dendrite with increasing I− concentrations. The crystalline grains are kept tetragonal, while the average crystal size changes from 22 to 89 µm by increasing the number of printing from 10 to 1000 times. DMF and dimethyl sulfoxide (DMSO) are used as solvents for printing CH3NH3PbBr3, and more regular grains are obtained from DMF solvent. Several patterns are printed on glass and papers, and fluorescent two‐dimensional (2D) patterns are observed under the 480 nm excitation. The as‐printed patterns show excellent homogeneity and high reproducibility, indicating that the inkjet printing shows broad application prospects in flexible electronics.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"77 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82835627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Crystallization and Morphology of Pb0.92La0.08(Zr0.68Ti0.32)0.98O3 Powders Synthesized Using the Gel‐Hydrothermal Process 凝胶水热法制备Pb0.92La0.08(Zr0.68Ti0.32)0.98O3粉体的结晶与形貌
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2021-05-28 DOI: 10.1002/crat.202100053
Xing Zong, Xiyun He, X. Zeng, P. Qiu, L. Ling, Ying Shi
{"title":"Crystallization and Morphology of Pb0.92La0.08(Zr0.68Ti0.32)0.98O3 Powders Synthesized Using the Gel‐Hydrothermal Process","authors":"Xing Zong, Xiyun He, X. Zeng, P. Qiu, L. Ling, Ying Shi","doi":"10.1002/crat.202100053","DOIUrl":"https://doi.org/10.1002/crat.202100053","url":null,"abstract":"Pure perovskite Pb0.92La0.08(Zr0.68Ti0.32)0.98O3 (PLZT (8/68/32)) crystal powders with good dispersibility are prepared by using gel‐hydrothermal method. The effects of mineralizer concentration, hydrothermal treatment time, and excess lead content on powder crystallization and morphology are examined and analyzed. The suitable mineralizer concentration and hydrothermal treatment time are found to be helpful to promote the PLZT crystal powders growth and improve the particle surface morphology. Noticeably, the introduction of excessive Pb can well compensate for the lack of A‐site ions in the solution, thereby promoting the formation of rhombohedral PLZT crystal powders. The following optimized hydrothermal conditions are established: the temperature ≈230 °C, the mineralizer concentration ≈2 m, the hydrothermal treatment time ≈24 h, and the amount of excess Pb ≈ 80%. The obtained PLZT crystal powders with clean and complete cube morphology, uniform particle size, and excellent dispersibility would be used as the crystal seeds applying in the seed‐induced growth of PLZT ceramics.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"86 11 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84003648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Study on Optoelectronic Properties of Copper Zinc Tin Sulfur Selenide: A Promising Thin‐Film Material for Next Generation Solar Technology 铜锌锡硒化硫薄膜材料的光电性能研究:一种有前途的下一代太阳能技术薄膜材料
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2021-05-26 DOI: 10.1002/crat.202000159
N. Ali, M. Zubair, Amir Khesro, R. Ahmed, S. Uddin, N. Shahzad, H. Alrobei, A. Kalam, A. Al‐Sehemi, B. Ul Haq
{"title":"A Study on Optoelectronic Properties of Copper Zinc Tin Sulfur Selenide: A Promising Thin‐Film Material for Next Generation Solar Technology","authors":"N. Ali, M. Zubair, Amir Khesro, R. Ahmed, S. Uddin, N. Shahzad, H. Alrobei, A. Kalam, A. Al‐Sehemi, B. Ul Haq","doi":"10.1002/crat.202000159","DOIUrl":"https://doi.org/10.1002/crat.202000159","url":null,"abstract":"Studies on copper zinc tin sulpher selenide (CZTSSe) thin‐film material and its applications as a base material are intensively being researched since it is an earth‐abundant, inexpensive, flexible, and interesting material for next‐generation optoelectronic technologies. Apropos, this study explores and reports the synthesis of CZTSSe thin films and their key optoelectronics characteristics. The reported films are fabricated on a soda‐lime glass substrate by using a physical vapor deposition technique, and then annealed from 250 to 450 °C. From the X‐ray diffraction analysis, the structure of the as‐deposited thin films is found to be amorphous in nature. Annealed thin films of CZTSSe exhibit polycrystalline nature with an average crystallite size of 46.3 nm in tetragonal structure. To determine the bandgap energy, as well as optical properties, the visible spectrophotometer, and four‐probe techniques, are used. From the measurements, the bandgap energy of the annealed film is found to be 1.64 eV at 450 °C which is in the optimal range as an absorber layer for solar cell devices. Similarly, by employing the four‐probe technique, I–V characteristics for the as‐deposited thin films, the material shows non‐ohmic behavior whereas the annealed film demonstrates partially ohmic with a resistance of 670 ohms.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"61 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90698452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anisotropic Growth of Silver Dendrites Regulated by Preferential Adsorption of Nitrate Ions on Crystal Facets 硝酸盐离子在银枝晶表面的优先吸附调控银枝晶的各向异性生长
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2021-05-25 DOI: 10.1002/crat.202100014
Haoyang Huang, Xiangyu Dou, Yongsheng Han
{"title":"Anisotropic Growth of Silver Dendrites Regulated by Preferential Adsorption of Nitrate Ions on Crystal Facets","authors":"Haoyang Huang, Xiangyu Dou, Yongsheng Han","doi":"10.1002/crat.202100014","DOIUrl":"https://doi.org/10.1002/crat.202100014","url":null,"abstract":"Dendritic structures are widely present in nature, from snowflakes to dendritic cells. However, their formation mechanisms are unclear, which causes long unsolved engineering problems, such as lithium dendrites. Here a strategy to control the growth of dendritic structures by the selective adsorption of ions on crystal facets is reported. Silver particles are synthesized by galvanic replacement reaction and the growth anisotropy of crystals is regulated by changing the concentration of nitrate ions in silver nitrate precursor solution. At a low concentration of nitrate ions, messy branching particles are synthesized while symmetric dendrites are generated at a high concentration of nitrate ions. Molecular dynamics simulation suggests that the selective adsorption of abundant nitrate ions on low‐energy facets promotes the prior growth of the high‐energy facets, resulting in the symmetric dendritic structures. When the potassium nitrate is changed to sodium nitrate, similar phenomena are obtained, confirming the role of selective adsorption of additives in regulating the growth anisotropy of crystals.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"3 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84713489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Synthesis of Bi2MoO6 and Activating Peroxymonosulfate to Enhance Photocatalytic Activity under Visible Light Irradiation Bi2MoO6的合成及活化过氧单硫酸酯增强可见光光催化活性
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2021-05-25 DOI: 10.1002/crat.202000219
Qianqian Zhao, Mingyang Long, Hongmiao Li, L. Wang, X. Bai, Yujie Zhang, Di Li
{"title":"Synthesis of Bi2MoO6 and Activating Peroxymonosulfate to Enhance Photocatalytic Activity under Visible Light Irradiation","authors":"Qianqian Zhao, Mingyang Long, Hongmiao Li, L. Wang, X. Bai, Yujie Zhang, Di Li","doi":"10.1002/crat.202000219","DOIUrl":"https://doi.org/10.1002/crat.202000219","url":null,"abstract":"Bi2MoO6 nanoflakes are synthesized via a normal hydrothermal method. Bi2MoO6 photocatalysts show lower photocatalytic activity for the degradation of methylene blue under visible light irradiation. In order to further enhance the degradation efficiency, Bi2MoO6 is used to activate the peroxymonosulfate for the degradation of methylene blue under visible light. Bi2MoO6 nanoflakes show excellent degradation efficiency in the Bi2MoO6/Vis/peroxymonosulfate (PMS) system. Moreover, the influences of PMS dosage, pH value, and inorganic anions on photodegradation are evaluated. The mechanism of activating peroxymonosulfate is proved by radical quenching experiment, which reveals that sulfate radicals govern the removal of methylene blue.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"22 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87478184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A Case Study to Address: “Is Your Pulsed Laser Deposition Chamber Clean?” 案例研究:“你的脉冲激光沉积室是干净的吗?”
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2021-05-25 DOI: 10.1002/crat.202000186
Manish Dumen, Ripudaman Kaur, Saveena Goyal, R. Tomar, N. Wadehra, S. Chakraverty
{"title":"A Case Study to Address: “Is Your Pulsed Laser Deposition Chamber Clean?”","authors":"Manish Dumen, Ripudaman Kaur, Saveena Goyal, R. Tomar, N. Wadehra, S. Chakraverty","doi":"10.1002/crat.202000186","DOIUrl":"https://doi.org/10.1002/crat.202000186","url":null,"abstract":"Pulsed laser deposition (PLD) is one of the important techniques for the growth of oxide thin films, interfaces, and superlattices. It can also be utilized to implement diverse combinatorial approaches. Thin film growth using PLD hinges on various parameters that decide the composition, structure, quality, and finally the physical properties of the films, interfaces, and superlattices. In this paper it is demonstrated how the growth conditions inside the chamber during the growth can be judged from outside by combining in situ and ex situ techniques. An example of the growth of LaVO3‐SrTiO3 interface is given to elucidate the effect of repetitive growth on the chamber condition and hence on the reproducibility of the physical properties of the samples. The experiments suggest noticeable change in transport properties with successive deposition processes.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"35 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84340828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Formation of a New Cocrystal Methyl‐4‐hydroxybenzoate:Urea and Its Structural and Thermal Properties 一种新型共晶甲基- 4 -羟基苯甲酸脲的形成及其结构和热性能
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2021-05-25 DOI: 10.1002/crat.202000223
Manikandan Vajaravel, Srinivasan Karuppannan
{"title":"Formation of a New Cocrystal Methyl‐4‐hydroxybenzoate:Urea and Its Structural and Thermal Properties","authors":"Manikandan Vajaravel, Srinivasan Karuppannan","doi":"10.1002/crat.202000223","DOIUrl":"https://doi.org/10.1002/crat.202000223","url":null,"abstract":"A new cocrystal comprising two pharmaceutically important molecules methyl‐4‐hydroxybenzoate (p‐MHB) (C8H8O3) and carbonyl diamide (urea) [CO(NH2)2] is crystallized together for the first time through restricted solvent evaporation method at ambient conditions. The single crystal X‐ray diffraction analysis shows that the engineered cocrystal p‐MHB:urea (1:1) (C9H12N2O4) crystallizes in monoclinic system with centrosymmetric space group C12/c1. The internal structure analysis shows that the urea molecule with its unique ability forms hydrogen bonding network throughout the cocrystal system. Different orientations of the identified synthons form the networks via supramolecular connections such as C═O⋯H─O and C═O⋯N─H. Correlation between the internal molecular configurations in the unit cell, protruding molecular groups on different growth faces, and attachment energies of different crystal planes is studied. The Hirshfeld surface analysis shows that the higher percentage of overall interactions between the carbon and oxygen atoms at the outer surfaces of the cocrystal induces further incorporation of molecular aggregation and crystal growth. The 2D finger print plots infer that about 90.9% of the overall interactions are mainly due to the H bonds. Differential scanning calorimetry analysis reveals that the grown cocrystal undergoes an observable phase transition at 105.65 °C prior to its melting endotherm that peaks at 110.29 °C.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"75 8 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88135632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Accurate Thickness Determination of 2D Materials 高精度二维材料厚度测定
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2021-05-06 DOI: 10.1002/crat.202100056
Yiping Xiao, Wenwen Zheng, B. Yuan, Chao Wen, M. Lanza
{"title":"Highly Accurate Thickness Determination of 2D Materials","authors":"Yiping Xiao, Wenwen Zheng, B. Yuan, Chao Wen, M. Lanza","doi":"10.1002/crat.202100056","DOIUrl":"https://doi.org/10.1002/crat.202100056","url":null,"abstract":"Determining the thickness of two‐dimensional (2D) materials accurately and reliably is highly necessary for multiple investigations, but at the same time it can be quite complex. Most studies in this field measure a topographic map at the edge of the 2D material using an atomic force microscope (AFM), and plot a single‐line cross‐section using the software of the AFM. However, this method is highly inaccurate and can result in high relative errors due to surface roughness and line‐to‐line variability. This is even more important in ultrathin (<4 nm) 2D materials grown by chemical vapor deposition, as these exhibit a larger surface roughness (compared to mechanically exfoliated) due to the high density of local defects. Here it is shown that the thickness of ultrathin 2D materials can be determined statistically with high accuracy and reliability in a very easy way by plotting the histogram height plot. Using this method should enhance the reliability of investigations and research papers in the field of 2D materials.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"9 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78392340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信