{"title":"Investigation of Phase Transition from Critical Nucleus to Bi2Te3 Nanoplate Based on Screw Dislocation‐Driven Spiral Growth by Solvothermal Synthesis","authors":"H. Yamazaki, Rikuo Eguchi, M. Takashiri","doi":"10.1002/crat.202100153","DOIUrl":"https://doi.org/10.1002/crat.202100153","url":null,"abstract":"Two‐dimensional bismuth telluride (Bi2Te3) nanoplates have great potential for thermoelectrics and topological insulators. The material performance increases as the nanoplate size decreases. However, the initial stage of the crystal growth of the nanoplates has not been significantly investigated. The Bi2Te3 nanoplates are prepared by solvothermal synthesis and the phase transition based on the screw dislocation‐driven spiral growth of the nanoplates is investigated. The optimal synthesis conditions are first determined by controlling the Te concentration in the precursor solution. The spiral‐grown nanoplates are collected from the synthesized products. The diameter of the critical nucleus is calculated to be in the range of 5.0–7.2 nm from the step width in the spiral. Subsequently, the solvothermal synthesis is implemented by changing the synthesis time from 15 to 1200 min under the optimal conditions of the precursor solution. Crystals are not grown in the solution at 15 min. At 25 min, an intermediate phase of Bi2TeO5 with an approximate grain size of 5.0 nm is formed, which corresponds to the calculated diameter of the critical nucleus. Another intermediate phase of Te is formed, and the Bi2Te3 nanoplates with a lateral size of 300 nm grow slowly at the expense of Bi2TeO5 and Te.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"46 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78633511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"X‐Ray White Beam Interferences on Thin Crystals","authors":"M. Heckert, Stefan Enghardt, J. Bauch","doi":"10.1002/crat.202100085","DOIUrl":"https://doi.org/10.1002/crat.202100085","url":null,"abstract":"Results of white beam X‐ray interference measurements on almost perfect semiconductor wafers are presented. A specific measurement geometry allows for the investigation of diffraction effects on thin wafers down to at least 375 µm with a simple experimental setup (standard lab CT with microfocus X‐ray tube). Furthermore, the dynamic diffraction effect of double refraction has been studied in detail for thicker samples. This might lead to a new wafer testing method as the observed dynamic effects are very sensible on crystal quality.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"9 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80550587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Minelarization: Amylopectin Regulated Mineralization of Calcium Carbonate and Its Application in Removing of Pb(II) (Crystal Research and Technology 8/2021)","authors":"","doi":"10.1002/crat.202170024","DOIUrl":"https://doi.org/10.1002/crat.202170024","url":null,"abstract":"","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"44 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88934494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Masthead: Crystal Research and Technology 8'2021","authors":"","doi":"10.1002/crat.202170025","DOIUrl":"https://doi.org/10.1002/crat.202170025","url":null,"abstract":"","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"39 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81133811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Book Review: Will Kleber Einführung in die Kristallographie, 20th Edition, Joachim Bohm, Detlef Klimm, Manfred Mühlberg, Björn Winkler. De Gruyter, Berlin/Boston, 2020, ISBN:9783110460230","authors":"Jonathan Buhl","doi":"10.1002/crat.202100104","DOIUrl":"https://doi.org/10.1002/crat.202100104","url":null,"abstract":"","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"28 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77701151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"(Crystal Research and Technology 7/2021)","authors":"","doi":"10.1002/crat.202170022","DOIUrl":"https://doi.org/10.1002/crat.202170022","url":null,"abstract":"","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"62 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81421440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Masthead: Crystal Research and Technology 7'2021","authors":"","doi":"10.1002/crat.202170023","DOIUrl":"https://doi.org/10.1002/crat.202170023","url":null,"abstract":"","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"11 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83362105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aaron Hunsaker, W. Goodwin, E. Rowe, C. Wheeler, L. Matei, V. Buliga, A. Burger
{"title":"Ceramic Cs2HfCl6: A Novel Scintillation Material for Use in Gamma Ray Spectroscopy","authors":"Aaron Hunsaker, W. Goodwin, E. Rowe, C. Wheeler, L. Matei, V. Buliga, A. Burger","doi":"10.1002/crat.202000166","DOIUrl":"https://doi.org/10.1002/crat.202000166","url":null,"abstract":"Single crystal scintillators have become one of the most common materials used in technologies that use radiation detectors. Unfortunately, as technology demands improved detectors, research into better single crystal scintillators has nearly reached its limit. Ceramics provide many benefits over single crystal scintillators and have emerged as a promising new production process. Recent research into ceramic scintillators has mostly dealt with oxides as they are relatively easy to handle and are typically non‐hygroscopic. Among single crystal scintillators, a trend has emerged indicating that the addition of halide ions into the crystal structure improves the light yield and energy resolution of the scintillation material but also tends to make the material hygroscopic and in some cases intrinsically radioactive. Little research is devoted to the investigation of undoped halide ceramic scintillators. Transparent halide Cs2HfCl6 ceramics are developed by hot uniaxial pressing, and the scintillation properties are compared to that of its single crystal counterpart. The energy resolution of the ceramic is found to be 6.4% at 662 keV. The initial results indicate that ceramic scintillators are a viable alternative and a promising new direction in scintillator material technology.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"70 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90886019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Sivakumar, P. Eniya, J. Sundar, Arisiappan Thirunavukkarasu, M. A. Lakshmi, G. Kanthimathi
{"title":"Investigation on the Effects of MnCl2 Doping on Structural and Optical Properties of DAST Single Crystals as Materials for Second Order Nonlinear Optics","authors":"T. Sivakumar, P. Eniya, J. Sundar, Arisiappan Thirunavukkarasu, M. A. Lakshmi, G. Kanthimathi","doi":"10.1002/crat.202100016","DOIUrl":"https://doi.org/10.1002/crat.202100016","url":null,"abstract":"The intent is to explore the optoelectronic properties of metal ions doped stilbazolium derivative, 4‐N,N′‐dimethylamino‐N‐methyl‐4‐stilbazolium tosylate (MnCl2‐DAST) nonlinear optical crystal materials for the existing technological necessities. The Mn‐DAST single crystals are crystallized by adopting the slow evaporation solution technique (SEST). The structural and crystallographic dimensions of grown crystals are affirmed using single‐crystal X‐ray diffraction and powder crystal X‐ray diffraction. Fourier transform infrared spectra are performed to explicate the functional groups and energy dispersive X‐ray analysis (EDAX) spectra confirm the presence of the chemical elements of grown crystals. The UV–vis absorption spectra of DAST and Mn‐DAST crystals exhibit all possible n–π* and π–π* electronic transitions. The blue shift is observed in the doped materials due to the exchange of lone pair electrons between the metal ions and organic molecule. Tremendously, the second order harmonic generation (SHG) efficiency of Mn (0.01 mol%) doped DAST crystals has 1.68 times larger than that of DAST crystal. From the metal‐organic crystals (Mn‐DAST), all the results brought out are the promising materials in the design of nonlinear optical applications.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"55 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87635974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ramalingam Thirumurugan, Singaravelu Ramalingam, S. Periandy., R. Aarthi
{"title":"Optoelectronic Evaluation, Chemical Potential Identification, Chemiparametric Oscillation Mapping, and Dielectric Efficiency Investigation of Organic NLO Crystal: 2‐Aminofluorene Using Computational Calculations","authors":"Ramalingam Thirumurugan, Singaravelu Ramalingam, S. Periandy., R. Aarthi","doi":"10.1002/crat.202100062","DOIUrl":"https://doi.org/10.1002/crat.202100062","url":null,"abstract":"In this work, the semi‐organic, 2‐aminofluorene single‐crystal is grown by slow evaporation method. The crystal is optimized and determination of optical axis and the crystal sample is characterized. The volume of the crystal is 568.22 Å3and density −1.311 mg cm−3. The XRD parameters estimate crystal lattice as orthorhombic. The birefringence effect is measured with inter‐atomic attractive dispersion forces. The rearrangement of molecular frame of fluorine on par with amino substitution is estimated. The electro‐optic effect is established by parametric oscillations of accumulation of chemical potential to enable the mechanism of nonlinear optical (NLO) effect. The dielectric loss with respect to the temperature/electrical frequency and the active optical property is measured. The amino group causes optical scattering of nodal regions for radiation absorption process to fascinate optical endurance. The chemical energy processing to acquire the chemical potential to operate light frequency amplification is thoroughly studied from the observation of chemical shift over the molecular frame. The oscillated parametric energy on nonbonding molecular orbital (NBMO) is initiated by the NH2group on the ring carbon–carbon (CC) and it is exchanged among nodal zones of core and comprised of the above segments of the ring.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"4 5 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75941972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}