Ethan Ng, John Rong Hao Tay, Sean Kuan Boey, Marja L Laine, Sašo Ivanovski, Chaminda Jayampath Seneviratne
{"title":"Antibiotic resistance in the microbiota of periodontitis patients: an update of current findings.","authors":"Ethan Ng, John Rong Hao Tay, Sean Kuan Boey, Marja L Laine, Sašo Ivanovski, Chaminda Jayampath Seneviratne","doi":"10.1080/1040841X.2023.2197481","DOIUrl":"10.1080/1040841X.2023.2197481","url":null,"abstract":"<p><p>Systemic antibiotics are an effective adjunct in the treatment of periodontitis, but their judicious use is necessary as antimicrobial resistance is a growing global concern. This review aims to explore the current understanding and insight related to antibiotic resistance in the subgingival microbiota of periodontitis patients. A search of MEDLINE (PubMed) was carried out from 1 January 2012 to 25 November 2021 for studies related to antibiotic resistance in periodontitis patients. Of the 90 articles identified, 12 studies were selected for inclusion. A significant incidence of antibiotic resistant isolates was reported for <i>Porphyromonas gingivalis</i>, <i>Prevotella intermedia</i>, <i>Prevotella denticola</i>, <i>Prevotella melaninogenica</i>, <i>Fusobacterium nucleatum</i>, <i>Tanerella forsythia</i>, <i>Aggretibacter actinomycetemcomitans</i>, <i>Streptococcus constellatus</i>, <i>Streptococcus intermedius</i>, and <i>Parvimonas micra,</i> but resistance to specific antibiotics did not reach above 10% of isolates in most studies except for amoxicillin resistance in <i>Aggretibacter actinomycetemcomitans</i>. The highest frequency of resistance across all bacterial species was for amoxicillin, clindamycin, and metronidazole. However, resistance patterns were widely variable across geographical locations, and the high heterogeneity between antibiotic-resistant isolates across studies precludes any clinical recommendations from this study. Although antibiotic resistance has yet to reach critical levels in periodontitis patients, an emphasis on antibiotic stewardship interventions such as point-of-care diagnostics and education for key stakeholders is needed to curb a growing problem.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"329-340"},"PeriodicalIF":6.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9774791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of single and mixed biofilms in <i>Clostridioides difficile</i> infection and strategies for prevention and inhibition.","authors":"Saiwei Zhong, Jingpeng Yang, He Huang","doi":"10.1080/1040841X.2023.2189950","DOIUrl":"10.1080/1040841X.2023.2189950","url":null,"abstract":"<p><p><i>Clostridioides difficile</i> infection (CDI) is a serious disease with a high recurrence rate. The single and mixed biofilms formed by <i>C. difficile</i> in the gut contribute to the formation of recurrent CDI (rCDI). In parallel, other gut microbes influence the formation and development of <i>C. difficile</i> biofilms, also known as symbiotic biofilms. Interactions between members within the symbiotic biofilm are associated with the worsening or alleviation of CDI. These interactions include effects on <i>C. difficile</i> adhesion and chemotaxis, modulation of LuxS/AI-2 quorum sensing (QS) system activity, promotion of cross-feeding by microbial metabolites, and regulation of intestinal bile acid and pyruvate levels. In the process of <i>C. difficile</i> biofilms control, inhibition of <i>C. difficile</i> initial biofilm formation and killing of <i>C. difficile</i> vegetative cells and spores are the main targets of action. The role of symbiotic biofilms in CDI suggested that targeting interventions of <i>C. difficile</i>-promoting gut microbes could indirectly inhibit the formation of <i>C. difficile</i> mixed biofilms and improved the ultimate therapeutic effect. In summary, this review outlines the mechanisms of <i>C. difficile</i> biofilm formation and summarises the treatment strategies for such single and mixed biofilms, aiming to provide new ideas for the prevention and treatment of CDI.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"285-299"},"PeriodicalIF":6.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9194139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdul Hamid Borghol, Elio R. Bitar, Aya Hanna, Georges Naim, Elias A. Rahal
{"title":"The role of Epstein-Barr virus in autoimmune and autoinflammatory diseases","authors":"Abdul Hamid Borghol, Elio R. Bitar, Aya Hanna, Georges Naim, Elias A. Rahal","doi":"10.1080/1040841x.2024.2344114","DOIUrl":"https://doi.org/10.1080/1040841x.2024.2344114","url":null,"abstract":"Epstein-Barr Virus (EBV), a dsDNA herpesvirus, is believed to play a significant role in exacerbating and potentially triggering autoimmune and autoinflammatory maladies. Around 90% of the world is...","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":"209 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140617073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Addressing low-density malaria infections in India and other endemic part of the world—the opportune time?","authors":"Loick P. Kojom Foko, Amit Moun, Vineeta Singh","doi":"10.1080/1040841x.2024.2339267","DOIUrl":"https://doi.org/10.1080/1040841x.2024.2339267","url":null,"abstract":"Shifting from high- to low-malaria transmission accompanies a higher proportion of asymptomatic low-density malaria infections (LDMI). Currently, several endemic countries, such as India, are exper...","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":"100 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140617274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gangli Zhu, Ni Tong, Yipeng Zhu, Lize Wang, Qirui Wang
{"title":"The crosstalk between SUMOylation and immune system in host-pathogen interactions","authors":"Gangli Zhu, Ni Tong, Yipeng Zhu, Lize Wang, Qirui Wang","doi":"10.1080/1040841x.2024.2339259","DOIUrl":"https://doi.org/10.1080/1040841x.2024.2339259","url":null,"abstract":"Pathogens can not only cause infectious diseases, immune system diseases, and chronic diseases, but also serve as potential triggers or initiators for certain tumors. They directly or indirectly da...","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":"98 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140588384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Periodontitis increases the risk of gastrointestinal dysfunction: an update on the plausible pathogenic molecuar mechanisms","authors":"Sayantan Mukherjee, Aditi Chopra, Shaswata Karmakar, Subraya Giliyar Bhat","doi":"10.1080/1040841x.2024.2339260","DOIUrl":"https://doi.org/10.1080/1040841x.2024.2339260","url":null,"abstract":"Periodontitis is an immuno-inflammatory disease of the soft tissues surrounding the teeth. Periodontitis is linked to many communicable and non-communicable diseases such as diabetes, cardiovascula...","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":"31 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140588369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ferroptosis, from the virus point of view: opportunities and challenges","authors":"Xia Zhao, Yan Zhang, Bing Luo","doi":"10.1080/1040841x.2024.2340643","DOIUrl":"https://doi.org/10.1080/1040841x.2024.2340643","url":null,"abstract":"Ferroptosis is a new type of cell death, which is mainly dependent on the formation and accumulation of reactive oxygen species and lipid peroxides mediated by iron. It is distinct from other forms...","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":"106 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140588493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comprehensive status update on modification of foley catheter to combat catheter-associated urinary tract infections and microbial biofilms.","authors":"Jatin Chadha, Navdisha Thakur, Sanjay Chhibber, Kusum Harjai","doi":"10.1080/1040841X.2023.2167593","DOIUrl":"10.1080/1040841X.2023.2167593","url":null,"abstract":"<p><p>Present-day healthcare employs several types of invasive devices, including urinary catheters, to improve medical wellness, the clinical outcome of disease, and the quality of patient life. Among urinary catheters, the Foley catheter is most commonly used in patients for bladder drainage and collection of urine. Although such devices are very useful for patients who cannot empty their bladder for various reasons, they also expose patients to catheter-associated urinary tract infections (CAUTIs). Catheter provides an ideal surface for bacterial colonization and biofilm formation, resulting in persistent bacterial infection and severe complications. Hence, rigorous efforts have been made to develop catheters that harbour antimicrobial and anti-fouling properties to resist colonization by bacterial pathogens. In this regard, catheter modification by surface functionalization, impregnation, blending, or coating with antibiotics, bioactive compounds, and nanoformulations have proved to be effective in controlling biofilm formation. This review attempts to illustrate the complications associated with indwelling Foley catheters, primarily focussing on challenges in fighting CAUTI, catheter colonization, and biofilm formation. In this review, we also collate scientific literature on catheter modification using antibiotics, plant bioactive components, bacteriophages, nanoparticles, and studies demonstrating their efficacy through <i>in vitro</i> and <i>in vivo</i> testing.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"168-195"},"PeriodicalIF":6.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10532947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mianzhi Wang, Junxuan Zhang, Jingyi Wei, Lei Jiang, Li Jiang, Yongxue Sun, Zhenling Zeng, Zhiqiang Wang
{"title":"Phage-inspired strategies to combat antibacterial resistance.","authors":"Mianzhi Wang, Junxuan Zhang, Jingyi Wei, Lei Jiang, Li Jiang, Yongxue Sun, Zhenling Zeng, Zhiqiang Wang","doi":"10.1080/1040841X.2023.2181056","DOIUrl":"10.1080/1040841X.2023.2181056","url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) in clinically priority pathogensis now a major threat to public health worldwide. Phages are bacterial parasites that efficiently infect or kill specific strains and represent the most abundant biological entities on earth, showing great attraction as potential antibacterial therapeutics in combating AMR. This review provides a summary of phage-inspired strategies to combat AMR. We firstly cover the phage diversity, and then explain the biological principles of phage therapy that support the use of phages in the post-antimicrobial era. Furthermore, we state the versatility methods of phage therapy both from direct access as well as collateral access. Among the direct access approaches, we discuss the use of phage cocktail therapy, phage-encoded endolysins and the bioengineering for function improvement of used phages or endolysins. On the other hand, we introduce the collateral access, including the phages antimicrobial immunity combined therapy and phage-based novel antibacterial mimic molecules. Nowadays, more and more talented and enthusiastic scientist, doctors, pharmacists, media, authorities, and industry are promoting the progress of phage therapy, and proposed more phages-inspired strategy to make them more tractable to combat AMR and benefit more people, more animal and diverse environment in \"one health\" framework.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":"1 1","pages":"196-211"},"PeriodicalIF":6.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47944002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lionel Schiavolin, Geoffrey Deneubourg, Jenny Steinmetz, Pierre R Smeesters, Anne Botteaux
{"title":"Group A <i>Streptococcus</i> adaptation to diverse niches: lessons from transcriptomic studies.","authors":"Lionel Schiavolin, Geoffrey Deneubourg, Jenny Steinmetz, Pierre R Smeesters, Anne Botteaux","doi":"10.1080/1040841X.2023.2294905","DOIUrl":"10.1080/1040841X.2023.2294905","url":null,"abstract":"<p><p>Group A Streptococcus (GAS) is a major human pathogen, causing diseases ranging from mild superficial infections of the skin and pharyngeal epithelium to severe systemic and invasive diseases. Moreover, post infection auto-immune sequelae arise by a yet not fully understood mechanism. The ability of GAS to cause a wide variety of infections is linked to the expression of a large set of virulence factors and their transcriptional regulation in response to various physiological environments. The use of transcriptomics, among others -omics technologies, in addition to traditional molecular methods, has led to a better understanding of GAS pathogenesis and host adaptation mechanisms. This review focusing on bacterial transcriptomic provides new insight into gene-expression patterns <i>in vitro, ex vivo</i> and <i>in vivo</i> with an emphasis on metabolic shifts, virulence genes expression and transcriptional regulators role.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"241-265"},"PeriodicalIF":6.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138884670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}