Bhavna Gowan Gordhan, Dale Liebenberg, Gabriella Scarlatti, Carolina Herrera, Francesca Chiodi, Neil Martinson, Julie Fox, Bavesh Davandra Kana
{"title":"<i>Ex vivo</i> challenge models for infectious diseases.","authors":"Bhavna Gowan Gordhan, Dale Liebenberg, Gabriella Scarlatti, Carolina Herrera, Francesca Chiodi, Neil Martinson, Julie Fox, Bavesh Davandra Kana","doi":"10.1080/1040841X.2023.2274855","DOIUrl":"10.1080/1040841X.2023.2274855","url":null,"abstract":"<p><p>Traditionally, molecular mechanisms of pathogenesis for infectious agents were studied in cell culture or animal models but have limitations on the extent to which the resulting data reflect natural infection in humans. The COVID-19 pandemic has highlighted the urgent need to rapidly develop laboratory models that enable the study of host-pathogen interactions, particularly the relative efficacy of preventive measures. Recently, human and animal <i>ex vivo</i> tissue challenge models have emerged as a promising avenue to study immune responses, screen potential therapies and triage vaccine candidates. This approach offers the opportunity to closely approximate human disease from the perspective of pathology and immune response. It has advantages compared to animal models which are expensive, lengthy and often require containment facilities. Herein, we summarize some recent advances in the development of <i>ex vivo</i> tissue challenge models for COVID-19, HIV-1 and other pathogens. We focus on the contribution of these models to enhancing knowledge of host-pathogen interactions, immune modulation, and their value in testing therapeutic agents. We further highlight the advantages and limitations of using <i>ex vivo</i> challenge models and briefly summarize how the use of organoids provides a useful advancement over current approaches. Collectively, these developments have enormous potential for the study of infectious diseases.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"785-804"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71421375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyle L Macauslane, Cassandra L Pegg, Kirsty R Short, Benjamin L Schulz
{"title":"Modulation of endoplasmic reticulum stress response pathways by respiratory viruses.","authors":"Kyle L Macauslane, Cassandra L Pegg, Kirsty R Short, Benjamin L Schulz","doi":"10.1080/1040841X.2023.2274840","DOIUrl":"10.1080/1040841X.2023.2274840","url":null,"abstract":"<p><p>Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"750-768"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71479085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S Mayo-Pérez, Y Gama-Martínez, S Dávila, N Rivera, I Hernández-Lucas
{"title":"LysR-type transcriptional regulators: state of the art.","authors":"S Mayo-Pérez, Y Gama-Martínez, S Dávila, N Rivera, I Hernández-Lucas","doi":"10.1080/1040841X.2023.2247477","DOIUrl":"10.1080/1040841X.2023.2247477","url":null,"abstract":"<p><p>The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"598-630"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10087604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in the applications of Bacteriophages and phage products against food-contaminating bacteria.","authors":"Suja E, Sathyanarayana N Gummadi","doi":"10.1080/1040841X.2023.2271098","DOIUrl":"10.1080/1040841X.2023.2271098","url":null,"abstract":"<p><p>Food-contaminating bacteria pose a threat to food safety and the economy by causing foodborne illnesses and spoilage. Bacteriophages, a group of viruses that infect only bacteria, have the potential to control bacteria throughout the \"farm-to-fork continuum\". Phage application offers several advantages, including targeted action against specific bacterial strains and minimal impact on the natural microflora of food. This review covers multiple aspects of bacteriophages applications in the food industry, including their use as biocontrol and biopreservation agents to fight over 20 different genera of food-contaminating bacteria, reduce cross-contamination and the risk of foodborne diseases, and also to prolong shelf life and preserve freshness. The review also highlights the benefits of using bacteriophages in bioprocesses to selectively inhibit undesirable bacteria, such as substrate competitors and toxin producers, which is particularly valuable in complex microbial bioprocesses where physical or chemical methods become inadequate. Furthermore, the review briefly discusses other uses of bacteriophages in the food industry, such as sanitizing food processing environments and detecting specific bacteria in food products. The review also explores strategies to enhance the effectiveness of phages, such as employing multi-phage cocktails, encapsulated phages, phage products, and synergistic hurdle approaches by combining them with antimicrobials.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"702-727"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49675291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights into the molecular mechanisms of <i>H. pylori</i>-associated B-cell lymphoma.","authors":"Kritika Malik, Prashant Kodgire","doi":"10.1080/1040841X.2024.2305439","DOIUrl":"10.1080/1040841X.2024.2305439","url":null,"abstract":"<p><p>Cancer research has extensively explored various factors contributing to cancer development, including chemicals, drugs, smoking, and obesity. However, the role of bacterial infections in cancer induction remains underexplored. In particular, the mechanisms underlying <i>H. pylori</i>-induced B-cell lymphoma, a potential consequence of bacterial infection, have received little attention. In recent years, there has been speculation about contagious agents causing persistent inflammation and encouraging B-lymphocyte transition along with lymphomagenesis. MALT lymphoma associated with chronic <i>H. pylori</i> infection, apart from two other central associated lymphomas - Burkitt's Lymphoma and DLBCL, is well studied. Owing to the increasing colonization of <i>H. pylori</i> in the host gut and its possible action in the development of B-cell lymphoma, this review aims to summarize the existing reports on different B-cell lymphomas' probable association with <i>H. pylori</i> infections; also emphasizing the function of the organism in lymphomagenesis; including its interaction with the host, pathogen and host-specific factors, and tumor microenvironment.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"879-895"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139575504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toan Bao Hung Nguyen, Marie Foulongne-Oriol, Jean-Luc Jany, Gaétan le Floch, Adeline Picot
{"title":"New insights into mycotoxin risk management through fungal population genetics and genomics.","authors":"Toan Bao Hung Nguyen, Marie Foulongne-Oriol, Jean-Luc Jany, Gaétan le Floch, Adeline Picot","doi":"10.1080/1040841X.2024.2392179","DOIUrl":"https://doi.org/10.1080/1040841X.2024.2392179","url":null,"abstract":"<p><p>Mycotoxin contamination of food and feed is a major global concern. Chronic or acute dietary exposure to contaminated food and feed can negatively affect both human and animal health. Contamination occurs through plant infection by toxigenic fungi, primarily <i>Aspergillus</i> and <i>Fusarium</i> spp., either before or after harvest. Despite the application of various management strategies, controlling these pathogens remains a major challenge primarily because of their ability to adapt to environmental changes and selection pressures. Understanding the genetic structure of plant pathogen populations is pivotal for gaining new insights into their biology and epidemiology, as well as for understanding the mechanisms behind their adaptability. Such deeper understanding is crucial for developing effective and preemptive management strategies tailored to the evolving nature of pathogenic populations. This review focuses on the population-level variations within the two most economically significant toxigenic fungal genera according to space, host, and pathogenicity. Outcomes in terms of migration patterns, gene flow within populations, mating abilities, and the potential for host jumps are examined. We also discuss effective yet often underutilized applications of population genetics and genomics to address practical challenges in the epidemiology and disease control of toxigenic fungi.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-22"},"PeriodicalIF":6.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nasal microbiome dynamics: decoding the intricate nexus in the progression of respiratory and neurological diseases.","authors":"Keerti Maheshwari, Rashi Gupta, Ruchika Sharma, Amanpreet Kaur, Atul Vashist, Geeta Aggarwal","doi":"10.1080/1040841X.2024.2391488","DOIUrl":"https://doi.org/10.1080/1040841X.2024.2391488","url":null,"abstract":"<p><p>In recent times, the nasal region has emerged as a distinctive and dynamic environment where a myriad of microbial communities establish residence from infancy, persisting as both commensal and opportunistic pathogens throughout the lifespan. Understanding the coexistence of microorganisms in respiratory mucosal layers, their potential for infections, and the underlying molecular mechanisms shaping these interactions is crucial for developing efficient diagnostic and therapeutic interventions against respiratory and neurodegenerative diseases. Despite significant strides in understanding the olfactory system's nexus with nasal microbiota, comprehensive correlations with neurological diseases still need to be discovered. The nasal microbiome, a sentinel in immune defense, orchestrates a delicate equilibrium that, when disrupted, can precipitate severe respiratory infections, including Chronic Rhinosinusitis, Chronic obstructive pulmonary disorder (COPD), and Asthma, and instigate a cascade effect on central nervous system diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Multiple sclerosis (MS). This review aims to redress this imbalance by meticulously exploring the anatomical and microbiological nuances of the nasal mucosal surface in health and disease. By delineating the molecular intricacies of these interactions, this review unravels the molecular mechanisms that govern the intricate nexus between nasal microbiota dysbiosis, olfactory dysfunction, and the progression of respiratory and neurological diseases.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-16"},"PeriodicalIF":6.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Peptide-based strategies for overcoming biofilm-associated infections: a comprehensive review.","authors":"T Manobala","doi":"10.1080/1040841X.2024.2390597","DOIUrl":"https://doi.org/10.1080/1040841X.2024.2390597","url":null,"abstract":"<p><p>Biofilms represent resilient microbial communities responsible for inducing chronic infections in human subjects. Given the escalating challenges associated with antibiotic therapy failures in clinical infections linked to biofilm formation, a peptide-based approach emerges as a promising alternative to effectively combat these notoriously resistant biofilms. Contrary to conventional antimicrobial peptides, which predominantly target cellular membranes, antibiofilm peptides necessitate a multifaceted approach, addressing various \"biofilm-specific factors.\" These factors encompass Extracellular Polymeric Substance (EPS) degradation, membrane targeting, cell signaling, and regulatory mechanisms. Recent research endeavors have been directed toward assessing the potential of peptides as potent antibiofilm agents. However, to translate these peptides into viable clinical applications, several critical considerations must be meticulously evaluated during the peptide design process. This review serves to furnish an all-encompassing summary of the pivotal factors and parameters that necessitate contemplation for the successful development of an efficacious antibiofilm peptide.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-18"},"PeriodicalIF":6.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuyang Zhang, Yuheng Zhao, Jonathan Lalsiamthara, Yan Peng, Linlong Qi, Shuli Deng, Qingjing Wang
{"title":"Current research progress on <i>Prevotella intermedia</i> and associated diseases.","authors":"Shuyang Zhang, Yuheng Zhao, Jonathan Lalsiamthara, Yan Peng, Linlong Qi, Shuli Deng, Qingjing Wang","doi":"10.1080/1040841X.2024.2390594","DOIUrl":"https://doi.org/10.1080/1040841X.2024.2390594","url":null,"abstract":"<p><p><i>Prevotella intermedia</i> is a Gram-negative anaerobic bacterium that is a common pathogen of periodontitis. Recent studies have revealed that <i>P. intermedia</i> is closely associated with a variety of diseases involving multiple systems. Under the action of its virulence factors such as cysteine protease and adhesins, <i>P. intermedia</i> has the ability to bind and invade various host cells including gingival fibroblasts. It can also copolymerize a variety of pathogenic bacteria, leading to interference with the host's immune inflammatory response and causing various diseases. In this article, we review the progress of research on <i>P. intermedia</i> virulence factors and bacterial pathogenesis, and the correlation between <i>P. intermedia</i> and various diseases.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-18"},"PeriodicalIF":6.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Shang, Dongmei Deng, Bastiaan P Krom, Susan Gibbs
{"title":"Oral host-microbe interactions investigated in 3D organotypic models.","authors":"Lin Shang, Dongmei Deng, Bastiaan P Krom, Susan Gibbs","doi":"10.1080/1040841X.2023.2211665","DOIUrl":"10.1080/1040841X.2023.2211665","url":null,"abstract":"<p><p>The oral cavity is inhabited by abundant microbes which continuously interact with the host and influence the host's health. Such host-microbe interactions (HMI) are dynamic and complex processes involving e.g. oral tissues, microbial communities and saliva. Due to difficulties in mimicking the <i>in vivo</i> complexity, it is still unclear how exactly HMI influence the transition between healthy status and disease conditions in the oral cavity. As an advanced approach, three-dimensional (3D) organotypic oral tissues (epithelium and mucosa/gingiva) are being increasingly used to study underlying mechanisms. These <i>in vitro</i> models were designed with different complexity depending on the research questions to be answered. In this review, we summarised the existing 3D oral HMI models, comparing designs and readouts, discussing applications as well as future perspectives.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"397-416"},"PeriodicalIF":6.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9813833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}