Zbigniew Mitura, Grzegorz Szwachta, Łukasz Kokosza, Marek Przybylski
{"title":"Identification of Kikuchi lines in electron diffraction patterns collected in small-angle geometry.","authors":"Zbigniew Mitura, Grzegorz Szwachta, Łukasz Kokosza, Marek Przybylski","doi":"10.1107/S2053273323009385","DOIUrl":"10.1107/S2053273323009385","url":null,"abstract":"<p><p>It is demonstrated that Kikuchi features become clearly visible if reflection high-energy electron diffraction (RHEED) patterns are filtered using digital image processing software. The results of such pattern transformations are shown for SrTiO<sub>3</sub> with mixed surface termination for data collected at different azimuths of the incident electron beam. A simplified analytical approach for the theoretical description of filtered Kikuchi patterns is proposed and discussed. Some examples of raw and filtered patterns for thin films are shown. RHEED patterns may be treated as a result of coherent and incoherent scattering of electron waves. The effects of coherent scattering may be considered as those occurring due to wave diffraction by an idealized crystal and, usually, only effects of this type are analysed to obtain structural information on samples investigated with the use of RHEED. However, some incoherent scattering effects mostly caused by thermal vibrations of atoms, known as Kikuchi effects, may also be a source of valuable information on the arrangements of atoms near the surface. Typically, for the case of RHEED, Kikuchi features are hidden in the intensity background and researchers cannot easily recognize them. In this paper, it is shown that the visibility of features of this type can be substantially enhanced using computer graphics methods.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"104-111"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138456514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Permissible domain walls in monoclinic M<sub>AB</sub> ferroelectric phases.","authors":"Ido Biran, Semën Gorfman","doi":"10.1107/S205327332300921X","DOIUrl":"10.1107/S205327332300921X","url":null,"abstract":"<p><p>The concept of monoclinic ferroelectric phases has been extensively used over recent decades for the understanding of crystallographic structures of ferroelectric materials. Monoclinic phases have been actively invoked to describe the phase boundaries such as the so-called morphotropic phase boundary in functional perovskite oxides. These phases are believed to play a major role in the enhancement of such functional properties as dielectricity and electromechanical coupling through rotation of spontaneous polarization and/or modification of the rich domain microstructures. Unfortunately, such microstructures remain poorly understood due to the complexity of the subject. The goal of this work is to formulate the geometrical laws behind the monoclinic domain microstructures. Specifically, the result of previous work [Gorfman et al. (2022). Acta Cryst. A78, 158-171] is implemented to catalog and outline some properties of permissible domain walls that connect `strain' domains with monoclinic (M<sub>A</sub>/M<sub>B</sub> type) symmetry, occurring in ferroelectric perovskite oxides. The term `permissible' [Fousek & Janovec (1969). J. Appl. Phys. 40, 135-142] pertains to the domain walls connecting a pair of `strain' domains without a lattice mismatch. It was found that 12 monoclinic domains may form pairs connected along 84 types of permissible domain walls. These contain 48 domain walls with fixed Miller indices (known as W-walls) and 36 domain walls whose Miller indices may change when free lattice parameters change as well (known as S-walls). Simple and intuitive analytical expressions are provided that describe the orientation of these domain walls, the matrices of transformation between crystallographic basis vectors and, most importantly, the separation between Bragg peaks, diffracted from each of the 84 pairs of domains, connected along a permissible domain wall. It is shown that the orientation of a domain wall may be described by the specific combination of the monoclinic distortion parameters r = [2/(γ - α)][(c/a) - 1], f = (π - 2γ)/(π - 2α) and p = [2/(π - α - γ)] [(c/a) - 1]. The results of this work will enhance understanding and facilitate investigation (e.g. using single-crystal X-ray diffraction) of complex monoclinic domain microstructures in both crystals and thin films.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"112-128"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138497224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hierarchical topological analysis of crystal structures: the skeletal net concept.","authors":"Olga A Blatova, Vladislav A Blatov","doi":"10.1107/S2053273323008975","DOIUrl":"10.1107/S2053273323008975","url":null,"abstract":"<p><p>Topological analysis of crystal structures faces the problem of the `correct' or the `best' assignment of bonds to atoms, which is often ambiguous. A hierarchical scheme is used where any crystal structure is described as a set of topological representations, each of which corresponds to a particular assignment of bonds encoded by a periodic net. In this set, two limiting nets are distinguished, complete and skeletal, which contain, respectively, all possible bonds and the minimal number of bonds required to keep the structure periodicity. Special attention is paid to the skeletal net since it describes the connectivity of a crystal structure in the simplest way, thus enabling one to find unobvious relations between crystalline substances of different composition and architecture. The tools for the automated hierarchical topological analysis have been implemented in the program package ToposPro. Examples, which illustrate the advantages of such analysis, are considered for a number of classes of crystalline substances: elements, intermetallics, ionic and coordination compounds, and molecular crystals. General provisions of the application of the skeletal net concept are also discussed.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"65-71"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89716120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Senik Matinyan, Pavel Filipcik, Jan Pieter Abrahams
{"title":"Deep learning applications in protein crystallography.","authors":"Senik Matinyan, Pavel Filipcik, Jan Pieter Abrahams","doi":"10.1107/S2053273323009300","DOIUrl":"10.1107/S2053273323009300","url":null,"abstract":"<p><p>Deep learning techniques can recognize complex patterns in noisy, multidimensional data. In recent years, researchers have started to explore the potential of deep learning in the field of structural biology, including protein crystallography. This field has some significant challenges, in particular producing high-quality and well ordered protein crystals. Additionally, collecting diffraction data with high completeness and quality, and determining and refining protein structures can be problematic. Protein crystallographic data are often high-dimensional, noisy and incomplete. Deep learning algorithms can extract relevant features from these data and learn to recognize patterns, which can improve the success rate of crystallization and the quality of crystal structures. This paper reviews progress in this field.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"1-17"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139376820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Isogonal 2-periodic polycatenanes: chain mail.","authors":"Michael O'Keeffe, Michael M J Treacy","doi":"10.1107/S2053273323009543","DOIUrl":"10.1107/S2053273323009543","url":null,"abstract":"<p><p>For 2-periodic polycatenanes with isogonal (vertex-transitive) embeddings, the basic units linked are torus knots and links including the unknots (untangled polygons). Twenty-four infinite families have been identified, with hexagonal, tetragonal or rectangular symmetry. The simplest members of each family are described and illustrated. A method for determining the catenation number of a ring based on electromagnetic theory is described.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"86-93"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138456515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Professor Dr Hendrik (Henk) Schenk (1939–2023)","authors":"Céleste A. Reiss","doi":"10.1107/s2053273323010379","DOIUrl":"https://doi.org/10.1107/s2053273323010379","url":null,"abstract":"Obituary for Professor Dr Hendrik (Henk) Schenk.","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":"8 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138554677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Isogonal embeddings of interwoven and self-entangled honeycomb (hcb) nets and related interpenetrating primitive cubic (pcu) nets.","authors":"Michael O'Keeffe, Michael M J Treacy","doi":"10.1107/S2053273323008495","DOIUrl":"10.1107/S2053273323008495","url":null,"abstract":"<p><p>Two- and three-periodic vertex-transitive (isogonal) piecewise-linear embeddings of self-entangled and interwoven honeycomb nets are described. The infinite families with trigonal symmetry and edge transitivity (isotoxal) are particularly interesting as they have the Borromean property that no two nets are directly linked. These also lead directly to infinite families of interpenetrating primitive cubic nets (pcu) that are also vertex- and edge-transitive and have embeddings with 90° angles between edges.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"560-569"},"PeriodicalIF":1.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50160039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An efficient system matrix factorization method for scanning diffraction based strain tensor tomography.","authors":"Axel Henningsson, Stephen A Hall","doi":"10.1107/S2053273323008136","DOIUrl":"10.1107/S2053273323008136","url":null,"abstract":"<p><p>Diffraction-based tomographic strain tensor reconstruction problems in which a strain tensor field is determined from measurements made in different crystallographic directions are considered in the context of sparse matrix algebra. Previous work has shown that the estimation of the crystal elastic strain field can be cast as a linear regression problem featuring a computationally involved assembly of a system matrix forward operator. This operator models the perturbation in diffraction signal as a function of spatial strain tensor state. The structure of this system matrix is analysed and a block-partitioned factorization is derived that reveals the forward operator as a sum of weighted scalar projection operators. Moreover, the factorization method is generalized for another diffraction model in which strain and orientation are coupled and can be reconstructed jointly. The proposed block-partitioned factorization method provides a bridge to classical absorption tomography and allows exploitation of standard tomographic ray-tracing libraries for implementation of the forward operator and its adjoint. Consequently, RAM-efficient, GPU-accelerated, on-the-fly strain/orientation tensor reconstruction is made possible, paving the way for higher spatial resolution studies of intragranular deformation.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"542-549"},"PeriodicalIF":1.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41091550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prices of IUCr journals.","authors":"A M Stanley","doi":"10.1107/S2053273323008094","DOIUrl":"10.1107/S2053273323008094","url":null,"abstract":"","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"600-601"},"PeriodicalIF":1.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41091818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel algorithm for calculation of Fourier and asymmetric units.","authors":"Frantisek Pavelcik","doi":"10.1107/S2053273323007714","DOIUrl":"10.1107/S2053273323007714","url":null,"abstract":"<p><p>A new method is presented for determining asymmetric and Fourier units based on plane groups for all space groups. These units are specifically designed to improve the calculation of fast Fourier transforms compared with the units derived from asymmetric units in the International Tables for Crystallography, Vol. A. The algorithm can be easily implemented into existing crystallographic programs using a short computer code.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"597-599"},"PeriodicalIF":1.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41092513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}