Acta Crystallographica Section A: Foundations and Advances最新文献

筛选
英文 中文
Modelling dynamical 3D electron diffraction intensities. II. The role of inelastic scattering. 动态三维电子衍射强度建模。二. 非弹性散射的作用非弹性散射的作用
IF 1.8 4区 材料科学
Acta Crystallographica Section A: Foundations and Advances Pub Date : 2024-03-01 Epub Date: 2024-01-25 DOI: 10.1107/S2053273323010690
Budhika Mendis
{"title":"Modelling dynamical 3D electron diffraction intensities. II. The role of inelastic scattering.","authors":"Budhika Mendis","doi":"10.1107/S2053273323010690","DOIUrl":"10.1107/S2053273323010690","url":null,"abstract":"<p><p>The strong interaction of high-energy electrons with a crystal results in both dynamical elastic scattering and inelastic events, particularly phonon and plasmon excitation, which have relatively large cross sections. For accurate crystal structure refinement it is therefore important to uncover the impact of inelastic scattering on the Bragg beam intensities. Here a combined Bloch wave-Monte Carlo method is used to simulate phonon and plasmon scattering in crystals. The simulated thermal and plasmon diffuse scattering are consistent with experimental results. The simulations also confirm the empirical observation of a weaker unscattered beam intensity with increasing energy loss in the low-loss regime, while the Bragg-diffracted beam intensities do not change significantly. The beam intensities include the diffuse scattered background and have been normalized to adjust for the inelastic scattering cross section. It is speculated that the random azimuthal scattering angle during inelastic events transfers part of the unscattered beam intensity to the inner Bragg reflections. Inelastic scattering should not significantly influence crystal structure refinement, provided there are no artefacts from any background subtraction, since the relative intensity of the diffracted beams (which includes the diffuse scattering) remains approximately constant in the low energy loss regime.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"178-188"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139544989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double-slit asymmetrical dynamical diffraction of X-rays in ideal crystals. 理想晶体中 X 射线的双缝非对称动态衍射。
IF 1.8 4区 材料科学
Acta Crystallographica Section A: Foundations and Advances Pub Date : 2024-03-01 Epub Date: 2024-01-23 DOI: 10.1107/S2053273323010331
Minas Balyan
{"title":"Double-slit asymmetrical dynamical diffraction of X-rays in ideal crystals.","authors":"Minas Balyan","doi":"10.1107/S2053273323010331","DOIUrl":"10.1107/S2053273323010331","url":null,"abstract":"<p><p>The theoretical investigation of double-slit asymmetrical dynamical diffraction of X-rays in perfect crystals establishes that Young's interference fringes on the exit surface are formed. The position of the fringes in the cross section of the beam depends on deviation from the Bragg exact orientation and asymmetry angle. An equation for the period of the fringes is presented, according to which the period is polarization sensitive. The period increases with increasing the absolute value of the asymmetry angle. In its turn, the size of the interference region also increases with increasing the absolute value of the asymmetry angle. However, the ratio of interference region size to period, i.e. the number of observed fringes, decreases with increasing the absolute value of the asymmetry angle. The size of the interference region can be of the order of a few tens of mm, which can be used for obtaining Fourier dynamical diffraction holograms of a large size. This type of diffraction can also be used for obtaining double-slit dynamical diffraction contrast of defects and deformations. Due to the phase difference information, in comparison with single-slit diffraction, double-slit diffraction is more sensitive to the existence of objects and deformations in the path of the wave.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"161-166"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139519271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated selection of nanoparticle models for small-angle X-ray scattering data analysis using machine learning. 利用机器学习自动选择用于小角 X 射线散射数据分析的纳米粒子模型。
IF 1.8 4区 材料科学
Acta Crystallographica Section A: Foundations and Advances Pub Date : 2024-03-01 Epub Date: 2024-02-29 DOI: 10.1107/S2053273324000950
Nicolas Monge, Alexis Deschamps, Massih Reza Amini
{"title":"Automated selection of nanoparticle models for small-angle X-ray scattering data analysis using machine learning.","authors":"Nicolas Monge, Alexis Deschamps, Massih Reza Amini","doi":"10.1107/S2053273324000950","DOIUrl":"10.1107/S2053273324000950","url":null,"abstract":"<p><p>Small-angle X-ray scattering (SAXS) is widely used to analyze the shape and size of nanoparticles in solution. A multitude of models, describing the SAXS intensity resulting from nanoparticles of various shapes, have been developed by the scientific community and are used for data analysis. Choosing the optimal model is a crucial step in data analysis, which can be difficult and time-consuming, especially for non-expert users. An algorithm is proposed, based on machine learning, representation learning and SAXS-specific preprocessing methods, which instantly selects the nanoparticle model best suited to describe SAXS data. The different algorithms compared are trained and evaluated on a simulated database. This database includes 75 000 scattering spectra from nine nanoparticle models, and realistically simulates two distinct device configurations. It will be made freely available to serve as a basis of comparison for future work. Deploying a universal solution for automatic nanoparticle model selection is a challenge made more difficult by the diversity of SAXS instruments and their flexible settings. The poor transferability of classification rules learned on one device configuration to another is highlighted. It is shown that training on several device configurations enables the algorithm to be generalized, without degrading performance compared with configuration-specific training. Finally, the classification algorithm is evaluated on a real data set obtained by performing SAXS experiments on nanoparticles for each of the instrumental configurations, which have been characterized by transmission electron microscopy. This data set, although very limited, allows estimation of the transferability of the classification rules learned on simulated data to real data.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"202-212"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913671/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139988763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning in crystallography and structural science. 晶体学和结构科学中的机器学习。
IF 1.8 4区 材料科学
Acta Crystallographica Section A: Foundations and Advances Pub Date : 2024-03-01 Epub Date: 2024-01-26 DOI: 10.1107/S2053273324000172
Simon J L Billinge, Thomas Proffen
{"title":"Machine learning in crystallography and structural science.","authors":"Simon J L Billinge, Thomas Proffen","doi":"10.1107/S2053273324000172","DOIUrl":"10.1107/S2053273324000172","url":null,"abstract":"<p><p>An overview of the virtual collection on machine learning (ML) in crystallography and structural science, as represented in Acta Crystallographica Sections A, B and D, IUCrJ and Journal of Synchrotron Radiation, is presented. Some terms and concepts related to artificial intelligence and machine learning are briefly introduced and described, and a short history of ML in structural science as it appeared in these IUCr journals is given to whet the appetite for the rest of the collection.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"139-145"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal parameters of bulk-solvent masks. 块状溶剂掩膜的通用参数。
IF 1.8 4区 材料科学
Acta Crystallographica Section A: Foundations and Advances Pub Date : 2024-03-01 Epub Date: 2024-02-09 DOI: 10.1107/S2053273324000299
Alexandre Urzhumtsev, Paul Adams, Pavel Afonine
{"title":"Universal parameters of bulk-solvent masks.","authors":"Alexandre Urzhumtsev, Paul Adams, Pavel Afonine","doi":"10.1107/S2053273324000299","DOIUrl":"10.1107/S2053273324000299","url":null,"abstract":"<p><p>The bulk solvent is a major component of biomacromolecular crystals that contributes significantly to the observed diffraction intensities. Accurate modelling of the bulk solvent has been recognized as important for many crystallographic calculations. Owing to its simplicity and modelling power, the flat (mask-based) bulk-solvent model is used by most modern crystallographic software packages to account for disordered solvent. In this model, the bulk-solvent contribution is defined by a binary mask and a scale (scattering) function. The mask is calculated on a regular grid using the atomic model coordinates and their chemical types. The grid step and two radii, solvent and shrinkage, are the three parameters that govern the mask calculation. They are highly correlated and their choice is a compromise between the computer time needed to calculate the mask and the accuracy of the mask. It is demonstrated here that this choice can be optimized using a unique value of 0.6 Å for the grid step irrespective of the data resolution, and the radii values adjusted correspondingly. The improved values were tested on a large sample of Protein Data Bank entries derived from X-ray diffraction data and are now used in the computational crystallography toolbox (CCTBX) and in Phenix as the default choice.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"194-201"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139705389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Report of the Executive Committee for 2022. 2022 年执行委员会报告。
IF 1.8 4区 材料科学
Acta Crystallographica Section A: Foundations and Advances Pub Date : 2024-03-01 Epub Date: 2024-02-22 DOI: 10.1107/S2053273323008197
{"title":"Report of the Executive Committee for 2022.","authors":"","doi":"10.1107/S2053273323008197","DOIUrl":"10.1107/S2053273323008197","url":null,"abstract":"<p><p>The report of the Executive Committee for 2022 is presented.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"221-223"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139928976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling dynamical 3D electron diffraction intensities. I. A scattering cluster algorithm. 动态三维电子衍射强度建模。I. 散射群算法。
IF 1.9 4区 材料科学
Acta Crystallographica Section A: Foundations and Advances Pub Date : 2024-03-01 Epub Date: 2024-01-25 DOI: 10.1107/S2053273323010689
Budhika Mendis
{"title":"Modelling dynamical 3D electron diffraction intensities. I. A scattering cluster algorithm.","authors":"Budhika Mendis","doi":"10.1107/S2053273323010689","DOIUrl":"10.1107/S2053273323010689","url":null,"abstract":"<p><p>Three-dimensional electron diffraction (3D-ED) is a powerful technique for crystallographic characterization of nanometre-sized crystals that are too small for X-ray diffraction. For accurate crystal structure refinement, however, it is important that the Bragg diffracted intensities are treated dynamically. Bloch wave simulations are often used in 3D-ED, but can be computationally expensive for large unit cell crystals due to the large number of diffracted beams. Proposed here is an alternative method, the `scattering cluster algorithm' (SCA), that replaces the eigen-decomposition operation in Bloch waves with a simpler matrix multiplication. The underlying principle of SCA is that the intensity of a given Bragg reflection is largely determined by intensity transfer (i.e. `scattering') from a cluster of neighbouring diffracted beams. However, the penalty for using matrix multiplication is that the sample must be divided into a series of thin slices and the diffracted beams calculated iteratively, similar to the multislice approach. Therefore, SCA is more suitable for thin specimens. The accuracy and speed of SCA are demonstrated on tri-isopropyl silane (TIPS) pentacene and rubrene, two exemplar organic materials with large unit cells.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"167-177"},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139544987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical models representing X-ray form factors of ions. 代表离子 X 射线形式因子的分析模型。
IF 1.8 4区 材料科学
Acta Crystallographica Section A: Foundations and Advances Pub Date : 2024-01-01 DOI: 10.1107/S2053273323010550
Gunnar Thorkildsen
{"title":"Analytical models representing X-ray form factors of ions.","authors":"Gunnar Thorkildsen","doi":"10.1107/S2053273323010550","DOIUrl":"10.1107/S2053273323010550","url":null,"abstract":"<p><p>Parameters in analytical models for X-ray form factors of ions f<sub>0</sub>(s), based on the inverse Mott-Bethe formula involving a variable number of Gaussians, are determined for a wide range of published data sets {s, f<sub>0</sub>(s)}. The models reproduce the calculated form-factor values close to what is expected from a uniform statistical distribution with limits determined by their precision. For different ions associated with the same atom, the number of Gaussians in the models decreases with increasing net positive charge.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"129-136"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139072707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetry groups of two-way twofold and three-way threefold fabrics. 双向两折和三向三折织物的对称群。
IF 1.8 4区 材料科学
Acta Crystallographica Section A: Foundations and Advances Pub Date : 2024-01-01 DOI: 10.1107/S2053273323008938
Ma Louise Antonette De Las Peñas, Mark Tomenes, Kristan Liza
{"title":"Symmetry groups of two-way twofold and three-way threefold fabrics.","authors":"Ma Louise Antonette De Las Peñas, Mark Tomenes, Kristan Liza","doi":"10.1107/S2053273323008938","DOIUrl":"10.1107/S2053273323008938","url":null,"abstract":"<p><p>This work discusses the symmetry groups of two classes of woven fabrics, two-way twofold fabrics and three-way threefold fabrics. A method to arrive at a design of a fabric is presented, employing methods in color symmetry theory. Geometric representations of all possible layer group or diperiodic symmetry structures of the fabrics are derived. There are 50 layer symmetry groups corresponding to two-way twofold fabrics and 27 layer symmetry groups corresponding to three-way threefold fabrics.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"33-51"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138795871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximal independence and symmetry in crystal chemistry of natural tectosilicates. 天然构造硅酸盐晶体化学的最大独立性和对称性。
IF 1.8 4区 材料科学
Acta Crystallographica Section A: Foundations and Advances Pub Date : 2024-01-01 DOI: 10.1107/S2053273323008665
Montauban Moreira de Oliveira, Jean Guillaume Eon
{"title":"Maximal independence and symmetry in crystal chemistry of natural tectosilicates.","authors":"Montauban Moreira de Oliveira, Jean Guillaume Eon","doi":"10.1107/S2053273323008665","DOIUrl":"10.1107/S2053273323008665","url":null,"abstract":"<p><p>Löwenstein's avoidance rule in aluminosilicates is reinterpreted on the basis of the fourth Pauling rule. It is shown that avoidance of Si-O-Si bridges may account for avoidance of Al-O-Al bridges. In view of this interpretation, it is proposed that the most favourable distributions of cations entering in substitution of silicon in the framework are associated to maximal independent sets of the respective 3-periodic nets. Among all possible solutions, only those with maximal symmetry are realized. The applicability of the concept is demonstrated for a few natural tectosilicates, which have been analysed through the prism of their labelled quotient graph.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"52-64"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89716121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信