Connective Tissue Research最新文献

筛选
英文 中文
The impact of N-acetylcysteine on early periods of tendon healing: histopathologic, immunohistochemical, and biomechanical analysis in a rat model. n -乙酰半胱氨酸对肌腱早期愈合的影响:大鼠模型的组织病理学、免疫组织化学和生物力学分析。
IF 2.8 4区 医学
Connective Tissue Research Pub Date : 2025-05-01 Epub Date: 2025-03-22 DOI: 10.1080/03008207.2025.2479501
Halil Büyükdoğan, Cemil Ertürk, Erdal Eren, Çiğdem Öztürk, Burak Yıldırım, Tahir Burak Sarıtaş, Metehan Demirkol
{"title":"The impact of N-acetylcysteine on early periods of tendon healing: <i>histopathologic, immunohistochemical, and biomechanical analysis in a rat model</i>.","authors":"Halil Büyükdoğan, Cemil Ertürk, Erdal Eren, Çiğdem Öztürk, Burak Yıldırım, Tahir Burak Sarıtaş, Metehan Demirkol","doi":"10.1080/03008207.2025.2479501","DOIUrl":"10.1080/03008207.2025.2479501","url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to evaluate the early effects of N-acetylcysteine, which has antioxidant, inflame-modulatory, and cytoprotective properties, on tendon healing.</p><p><strong>Materials and methods: </strong>Thirty-five male Wistar Hannover rats were divided into five groups: first-week treatment (Group 1T), first-week control (Group 1C), third-week treatment (Group 3T), third-week control (Group 3C), and native tendons (Group N). Bilateral Achilles tenotomy was performed on all rats except Group N. After tenotomy, 150 mg/kg N-acetylcysteine was administered daily intraperitoneally to treatment groups, while isotonic saline was given to the control groups. Tendons were evaluated histopathologically, immunohistochemically, and biomechanically after sacrifice in the first and third weeks.</p><p><strong>Results: </strong>No significant differences were observed in the first week (<i>p</i> > 0.05). Movin and Bonar scores (lower scores reflect improved histologic healing) were significantly lower in Group 3T than in Group 3C (<i>p</i> = 0.002). Collagen type-I/type-III ratios were higher in Group 3T compared to Group 3C (<i>p</i> = 0.001). Fmax (N) values were similar across Group 3T, Group 3C, and Group N (<i>p</i> = 0.772). However, cross-sectional areas (mm<sup>2</sup>) were significantly smaller in Group 3T than in Group 3C (<i>p</i> = 0.001), with the smallest areas observed in native tendons. Thus, tensile strength (MPa, load per unit area) and toughness (J/10<sup>3</sup> mm<sup>3</sup>, energy absorbed per unit volume) were significantly higher in Group 3T than in Group 3C (<i>p</i> = 0.001).</p><p><strong>Conclusion: </strong>N-acetylcysteine supplied some improved results on early markers of tendon healing. Although our findings support the potential of NAC as a therapeutic adjunct in tendon injuries, further studies are needed to evaluate the long-term effects and underlying mechanisms.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"161-174"},"PeriodicalIF":2.8,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143676770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bone marrow mesenchymal stem cells (BMSCs)-derived exosomal METTL3 regulates the m6A methylation of SMAD5 to promote osteogenic differentiation of osteoblasts. 骨髓间充质干细胞(BMSCs)来源的外泌体METTL3调节SMAD5的m6A甲基化,促进成骨细胞的成骨分化。
IF 2.8 4区 医学
Connective Tissue Research Pub Date : 2025-05-01 Epub Date: 2025-04-29 DOI: 10.1080/03008207.2025.2496832
Zhenhua Li, Yifei Liu, Xiulan Zhao, Guohua Xu
{"title":"Bone marrow mesenchymal stem cells (BMSCs)-derived exosomal METTL3 regulates the m6A methylation of SMAD5 to promote osteogenic differentiation of osteoblasts.","authors":"Zhenhua Li, Yifei Liu, Xiulan Zhao, Guohua Xu","doi":"10.1080/03008207.2025.2496832","DOIUrl":"10.1080/03008207.2025.2496832","url":null,"abstract":"<p><strong>Background: </strong>Methyltransferase-like 3 (METTL3) is implicated in human diseases, including osteoporosis (OP). In this study, we aimed to explore the functions and mechanisms of METTL3 in OP using bone marrow mesenchymal stem cells (BMSCs).</p><p><strong>Methods: </strong>The identification of BMSCs-derived exosomes was conducted by transmission electron microscope (TEM), Nanoparticle Tracking Analysis (NTA) and western blot. The osteogenic differentiation of osteoblasts (hFOB1.19) was analyzed by Alizarin red staining assay, Alkaline phosphatase (ALP) staining assay and western blot. The relationship between METTL3 and SMAD family member 5 (SMAD5) was analyzed by Methylated RNA Immunoprecipitation (MeRIP) assay and dual-luciferase reporter assay.</p><p><strong>Results: </strong>BMSCs-derived exosomes (BMSC-Exos) promoted the osteogenic differentiation and elevated METTL3 expression in hFOB1.19 cells. Exosomal METTL3 knockdown repressed the osteogenic differentiation in hFOB1.19 cells. METTL3 could stabilize and regulate SMAD5 expression by N6-methyladenosine (m6A) modification. Moreover, SMAD5 overexpression restored exosomal METTL3 knockdown-mediated effect on the osteogenic differentiation in hFOB1.19 cells.</p><p><strong>Conclusion: </strong>BMSCs-derived exosomal METTL3 mediated the m6A methylation of SMAD5 to facilitate osteogenic differentiation of hFOB1.19 cells.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"204-215"},"PeriodicalIF":2.8,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143986301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
"The role of mitogen-activated protein kinase signaling pathway in bone formation during mid-palatal suture expansion". 裂丝原激活的蛋白激酶信号通路在中腭缝扩张期间骨形成中的作用。
IF 2.8 4区 医学
Connective Tissue Research Pub Date : 2025-05-01 Epub Date: 2025-04-29 DOI: 10.1080/03008207.2025.2498509
Xiaoyue Xiao, Shujuan Zou, Zhiai Hu, Jianwei Chen
{"title":"\"The role of mitogen-activated protein kinase signaling pathway in bone formation during mid-palatal suture expansion\".","authors":"Xiaoyue Xiao, Shujuan Zou, Zhiai Hu, Jianwei Chen","doi":"10.1080/03008207.2025.2498509","DOIUrl":"10.1080/03008207.2025.2498509","url":null,"abstract":"<p><strong>Purpose: </strong>Orthodontic interventions such as maxillary expansion are pivotal in correcting malocclusions; however, the intracellular mechanisms of bone remodeling during this process are not well understood. This study investigated the role of the mitogen-activated protein kinase (MAPK) pathway in bone remodeling during maxillary expansion and relapse in rats.</p><p><strong>Materials and methods: </strong>Thirty male Wistar rats were randomly divided into three groups: Control (Ctrl), Expansion only (EO), and Expansion with MEK inhibitor U0126 (EO  +  INH). Customized expanders applied 100 g force for seven days, followed by natural relapse. Tissue changes within the mid-palatal suture were assessed via micro-computed tomography, histology, and immunohistochemistry. In vitro, primary bone marrow mesenchymal stem cells (BMSCs) were exposed to cyclic tensile stress with or without MAPK inhibition, followed by evaluation of protein expression, alkaline phosphatase activity, and Alizarin red staining.</p><p><strong>Results: </strong>The EO group showed a significant increase in maxillary arch width compared to the EO  +  INH group, a difference that remained significant after relapse. This group also had higher levels of phosphorylated mitogen-extracellular kinase (p-MEK), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and phosphorylated Ets-like transcription factor 1 (p-ELK1), along with increased osteoblast markers and bone resorption. Conversely, MAPK inhibition impeded bone remodeling, indicated by decreased osteogenic markers and fewer TRAP-positive cells. In vitro, tensile stress enhanced osteogenic differentiation, which was attenuated with MAPK inhibition.</p><p><strong>Conclusions: </strong>Mechanical activation of MEK-ERK1/2-ELK1 pathway is essential for effective maxillary expansion. Thus, inhibiting this pathway significantly impairs bone remodeling, underscoring its potential as a therapeutic target to enhance bone formation in orthodontic treatments.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"216-226"},"PeriodicalIF":2.8,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143986405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of IRF8 on osteocyte apoptosis in steroid-induced osteonecrosis of the femoral head. 激素性股骨头坏死中IRF8对骨细胞凋亡的影响。
IF 2.8 4区 医学
Connective Tissue Research Pub Date : 2025-03-01 Epub Date: 2025-03-08 DOI: 10.1080/03008207.2025.2472935
Junwu Ye, Tianmin Chang, Xihai Zhang, Daiqing Wei, Yuanhui Wang
{"title":"Mechanism of IRF8 on osteocyte apoptosis in steroid-induced osteonecrosis of the femoral head.","authors":"Junwu Ye, Tianmin Chang, Xihai Zhang, Daiqing Wei, Yuanhui Wang","doi":"10.1080/03008207.2025.2472935","DOIUrl":"10.1080/03008207.2025.2472935","url":null,"abstract":"<p><strong>Background: </strong>Steroid-induced osteonecrosis of the femoral head (SONFH) is a metabolic disorder that leads to structural changes, collapse of the femoral head, and joint dysfunction. This study investigates the role of interferon regulatory factor 8 (IRF8) in osteocyte apoptosis in SONFH, so as to find new targets for the treatment of SONFH.</p><p><strong>Methods: </strong>Murine long bone osteocyte-Y4 cells were cultured and treated with dexamethasone to establish SONFH cell models. si-IRF8 was transfected into the cells. The expression levels of IRF8, B cell leukemia/lymphoma 2 (Bcl-2), BCL2 associated X (Bax), zinc finger protein 667 (ZNF667), and miR-181a-5p were detected. Cell apoptosis and viability were detected. The enrichment of IRF8 on the miR-181a-5p promoter was assayed. The binding relationship between IRF8 and miR-181a-5p promoter, and between miR-181a-5p and ZNF667 3'UTR sequence was verified. Combined experiments with miR-181a-5p knockdown or ZNF667 overexpression were performed to observe the changes in cell apoptosis.</p><p><strong>Results: </strong>IRF8 and ZNF667 were increased in SONFH cells and miR-181a-5p was decreased. Inhibition of IRF8 increased SONFH cell viability and reduced apoptosis. Mechanistically, IRF8 was enriched in the miR-181a-5p promoter to inhibit miR-181a-5p and miR-181a-5p targeted and inhibited ZNF667. miR-181a-5p knockdown or ZNF667 overexpression could alleviate the inhibitory effect of IRF8 down-regulation on osteocyte apoptosis in SONFH.</p><p><strong>Conclusion: </strong>IRF8 was enriched in the miR-181a-5p promoter to inhibit miR-181a-5p, thus promoting ZNF667 levels and increasing osteocyte apoptosis in SONFH, which may be a new theoretical basis for the treatment of SONFH.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"136-146"},"PeriodicalIF":2.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 修正。
IF 2.8 4区 医学
Connective Tissue Research Pub Date : 2025-03-01 Epub Date: 2025-03-24 DOI: 10.1080/03008207.2025.2483579
{"title":"Correction.","authors":"","doi":"10.1080/03008207.2025.2483579","DOIUrl":"10.1080/03008207.2025.2483579","url":null,"abstract":"","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"147"},"PeriodicalIF":2.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143691387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lysophosphatidic acid regulates implant osseointegration in murine models via YAP. 溶血磷脂酸通过YAP调节小鼠种植体骨整合。
IF 2.8 4区 医学
Connective Tissue Research Pub Date : 2025-03-01 Epub Date: 2025-02-04 DOI: 10.1080/03008207.2025.2459856
Qin Zhang, Ying Yuan, Bin Wang, Ping Gong, Lin Xiang
{"title":"Lysophosphatidic acid regulates implant osseointegration in murine models via YAP.","authors":"Qin Zhang, Ying Yuan, Bin Wang, Ping Gong, Lin Xiang","doi":"10.1080/03008207.2025.2459856","DOIUrl":"10.1080/03008207.2025.2459856","url":null,"abstract":"<p><strong>Background: </strong>Lysophosphatidic acid (LPA), a simple bioactive lysophospholipid, has been reported to regulate bone homeostasis and bone remodeling. This study aimed to elucidate the function and intrinsic mechanism of LPA in osseointegration in murine models.</p><p><strong>Method: </strong>We constructed immediate implant models in murine maxillae. Micro-CT, H&E staining, and PCR assays were performed to evaluate the effects of LPA on osseointegration. Furthermore, <i>Prx1-Cre;Yap<sup>f/f</sup></i> mice and <i>Sp7-Cre;Yap<sup>f/f</sup></i> mice were generated to investigate the role of YAP on LPA-induced osseointegration.</p><p><strong>Result: </strong>In this study, we identified that LPA might promote bone deposition on the tissue-implant interface and improve osseointegration. In addition, conditional knockout of YAP from MCSs and pre-osteoblasts blunts LPA-induced osteogenesis and osseointegration in mice.</p><p><strong>Conclusion: </strong>Our data demonstrated that LPA-YAP signaling is particularly important to regulate osseointegration, which expands our understanding of LPA and provide the potential of LPA to be used in osseointegration.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"87-95"},"PeriodicalIF":2.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional changes to Achilles tendon and enthesis in an adolescent mouse model of testosterone hormone therapy. 睾酮激素治疗的青春期小鼠模型跟腱和椎体功能改变。
IF 2.8 4区 医学
Connective Tissue Research Pub Date : 2025-03-01 Epub Date: 2025-02-28 DOI: 10.1080/03008207.2025.2465322
LeeAnn A Hold, Tessa Phillips, Paige Cordts, Stephanie S Steltzer, Seung-Ho Bae, Brandon W Henry, Nicole Migotsky, Sydney Grossman, Cynthia Dela Cruz, Vasantha Padmanabhan, Molly B Moravek, Ariella Shikanov, Adam C Abraham, Megan L Killian
{"title":"Functional changes to Achilles tendon and enthesis in an adolescent mouse model of testosterone hormone therapy.","authors":"LeeAnn A Hold, Tessa Phillips, Paige Cordts, Stephanie S Steltzer, Seung-Ho Bae, Brandon W Henry, Nicole Migotsky, Sydney Grossman, Cynthia Dela Cruz, Vasantha Padmanabhan, Molly B Moravek, Ariella Shikanov, Adam C Abraham, Megan L Killian","doi":"10.1080/03008207.2025.2465322","DOIUrl":"10.1080/03008207.2025.2465322","url":null,"abstract":"<p><strong>Purpose/aim: </strong>Some youth seek puberty suppression to prolong decision-making prior to starting hormone therapy to help align their physical sex characteristics with their gender identity. During peripubertal growth, connective tissues such as tendon rapidly adapt to applied mechanical loads (e.g. exercise) yet if and how tendon adaptation is influenced by sex and gender-affirming hormone therapy during growth remains unknown. The goal of this study was to understand how pubertal suppression followed by testosterone influences the structural and functional properties of the Achilles tendon using an established adolescent mouse model of testosterone hormone therapy.</p><p><strong>Materials and methods: </strong>C57BL/6N female mice were assigned at postnatal day 26 to the following experimental groups: control (vehicle treated), gonadotropin release hormone analogue (GnRHa) treatment alone to delay puberty, testosterone (T) alone after puberty, or delayed puberty with T treatment (i.e. GnRHa followed by T).</p><p><strong>Results: </strong>We found that pubertal suppression using GnRHa with and without T, as well as treatment with T alone post-puberty, increased the ultimate load of tendon in female mice. Additionally, we found that GnRHa, but not T treatment resulted in a significant increase in cell density at the Achilles enthesis.</p><p><strong>Conclusions: </strong>These findings demonstrate that delayed puberty and T have no negative influence on structural or functional properties of mouse tendon.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"96-106"},"PeriodicalIF":2.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metformin ablates high fat diet-induced skeletal muscle hypertrophy and elevation of sarcolemmal GLUT4 when feeding is initiated in young adult male mice. 二甲双胍可以消除高脂肪饮食引起的骨骼肌肥大和年轻成年雄性小鼠开始喂养时肌层GLUT4的升高。
IF 2.8 4区 医学
Connective Tissue Research Pub Date : 2025-03-01 Epub Date: 2025-03-07 DOI: 10.1080/03008207.2025.2471853
John M Lawler, Khaled Y Kamal, Rachel E Botchlett, Shih Lung Woo, Honggui Li, Jeff M Hord, James D Fluckey, Chaodong Wu
{"title":"Metformin ablates high fat diet-induced skeletal muscle hypertrophy and elevation of sarcolemmal GLUT4 when feeding is initiated in young adult male mice.","authors":"John M Lawler, Khaled Y Kamal, Rachel E Botchlett, Shih Lung Woo, Honggui Li, Jeff M Hord, James D Fluckey, Chaodong Wu","doi":"10.1080/03008207.2025.2471853","DOIUrl":"10.1080/03008207.2025.2471853","url":null,"abstract":"<p><p>A high-fat diet (HFD) and metabolic disease can impair insulin signaling in skeletal muscle, including a reduction in IRS-1 and GLUT-4 at the cell membrane. Other sarcolemmal proteins (e.g. caveolin-3, nNOS) within the dystrophin-glycoprotein complex (DGC) are partially lost with Type II diabetes. Thus, we hypothesized that a HFD would cause a significant loss of sarcolemmal DGC proteins and GLUT4, and the anti-diabetic drug metformin would mitigate the disruption of the DGC and preserve sarcolemmal GLUT4 on the soleus muscle. Eight-week-old mice were fed a high-fat diet for 12 weeks. After 8 weeks, one-half of the HFD mice received metformin for the remaining 4 weeks. HFD caused a marked increase in soleus muscle mass and fiber cross-sectional area and elevated sarcolemmal GLUT4, even though systemic insulin resistance was greater. HFD-induced muscle hypertrophy and elevated membrane GLUT4 were unexpectedly attenuated by metformin. In addition, IRS-1 positive staining was not reduced by HFD but rather enhanced in the metformin mice fed a high-fat diet. Sarcolemmal staining of dystrophin and caveolin-3 was reduced by HFD but not in the metformin group, while nNOS intensity was unaffected by HFD and metformin. These findings suggest that skeletal muscles in young adult mice can compensate for a high-fat diet and insulin resistance, with a minor disruption of the DGC, by maintaining cell membrane nNOS and IRS-1 and elevating GLUT4. We postulate that a window of compensatory GLUT4 and nNOS signaling allows calorically dense food to enhance skeletal muscle fiber size when introduced in adolescence.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"121-135"},"PeriodicalIF":2.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143572266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TGF-β1 requires IL-13 to sustain collagen accumulation and increasing tissue strength and stiffness. TGF-β1需要IL-13维持胶原积累,增加组织强度和硬度。
IF 2.8 4区 医学
Connective Tissue Research Pub Date : 2025-03-01 Epub Date: 2025-02-27 DOI: 10.1080/03008207.2025.2469575
Caitlin M Hopkins, Benjamin T Wilks, Jeffrey R Morgan
{"title":"TGF-β1 requires IL-13 to sustain collagen accumulation and increasing tissue strength and stiffness.","authors":"Caitlin M Hopkins, Benjamin T Wilks, Jeffrey R Morgan","doi":"10.1080/03008207.2025.2469575","DOIUrl":"10.1080/03008207.2025.2469575","url":null,"abstract":"<p><strong>Aims: </strong>Fibrosis is a multifactorial process characterized by the excessive accumulation of extracellular matrix (ECM), increased tissue stiffness, and decreased elasticity. This study examined how individual cytokines and a cytokine combination alter collagen production and biomechanics in a 3D in vitro model of the human ECM.</p><p><strong>Methods: </strong>Cultured human fibroblasts were seeded into a circular agarose trough molded in 24 well plates. The fibroblasts aggregated and formed a 3D ring-shaped tissue that synthesized de novo a collagen-rich human ECM complete with collagen fibrils. Unlike existing models, no macromolecular crowders were added, nor artificial scaffolds or exogenous ECM proteins. Rings were treated with TGF-β1, IL-13 or the combination of TGF-β1 and IL-13 for up to 3 weeks. Morphology, histology, collagen, DNA, fibril formation, gene expression and tensile properties of the rings were measured.</p><p><strong>Results: </strong>As the rings compacted, cellularity and total DNA decreased, whereas total collagen accumulated. TGF-β1 stimulated collagen accumulation and increased ring biomechanics at day 7, but these increases stalled and declined by day 21. When treated with IL-13, a cytokine exclusive to the immune system, there were no significant differences from control. However, when TGF-β1 was combined with IL-13, collagen levels and ring biomechanics increased over the entire three weeks to levels higher than TGF-β1 alone. Gene expression was differentially regulated by cytokine treatment over the entire three weeks suggesting that increased collagen accumulation was not due to upregulation of collagen gene expression.</p><p><strong>Conclusions: </strong>These results suggest that TGF-β1 requires a second signal, such as IL-13, to sustain the long-term pathological increases in collagen accumulation and biomechanics that can compromise the function of fibrotic tissues.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"107-120"},"PeriodicalIF":2.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143514957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creatine promotes osteogenic differentiation of dental pulp stem cells via the AMPK-ULK1-autophagy axis. 肌酸通过ampk - ulk1自噬轴促进牙髓干细胞成骨分化。
IF 2.8 4区 医学
Connective Tissue Research Pub Date : 2025-03-01 Epub Date: 2025-02-11 DOI: 10.1080/03008207.2025.2459243
Lin Liu, Zhuangzhuang Chu, Xiao Han, Jin Wu, Kunzhan Cai, Jiaohong Wang, Zixiang Guo, Shan Gao, Guoqing Li, Chunbo Tang
{"title":"Creatine promotes osteogenic differentiation of dental pulp stem cells via the AMPK-ULK1-autophagy axis.","authors":"Lin Liu, Zhuangzhuang Chu, Xiao Han, Jin Wu, Kunzhan Cai, Jiaohong Wang, Zixiang Guo, Shan Gao, Guoqing Li, Chunbo Tang","doi":"10.1080/03008207.2025.2459243","DOIUrl":"10.1080/03008207.2025.2459243","url":null,"abstract":"<p><strong>Objective: </strong>We aimed to demonstrate the effects of creatine (Cr) on osteogenic differentiation (OD) in HDPSCs.</p><p><strong>Materials and methods: </strong>HDPSCs were treated with Cr and an inhibitor of Cr transporter. The OD capacity was evaluated by detecting ALP staining and activity, alizarin red staining (ARS), as well as osteogenesis-related protein levels. Transcriptomic sequencing, western blotting, transmission electron microscopy, immunofluorescence staining, and autophagy-related protein marker detection were applied to illustrate the underlying mechanism. Furthermore, the impact of Cr on bone regeneration was investigated in vivo.</p><p><strong>Results: </strong>We found that 1 mm of Cr effectively enhanced the OD of HDPSCs. The creatine group displayed significantly increased AMPK phosphorylation, overexpressed autophagy-related proteins, enhanced OD, and mineralization capabilities. We also found that ULK1 is the downstream molecule through which AMPK induces cellular autophagy. In vivo results demonstrated that Cr could increase the new bone formation of periodontitis.</p><p><strong>Conclusion: </strong>Our research discovered a new AMPK-ULK1-autophagy pathway through which Cr enhances OD in HDPSCs. Cr enhanced HDPSCs-mediated periodontal tissue regeneration in a periodontitis mouse model, providing a theoretical foundation for the study of bone repair in periodontitis.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"73-86"},"PeriodicalIF":2.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信