Emmanuel Eghan-Acquah , Alireza Y Bavil , David Bade , Martina Barzan , Azadeh Nasseri , David J Saxby , Stefanie Feih , Christopher P Carty
{"title":"Enhancing biomechanical outcomes in proximal femoral osteotomy through optimised blade plate sizing: A neuromusculoskeletal-informed finite element analysis","authors":"Emmanuel Eghan-Acquah , Alireza Y Bavil , David Bade , Martina Barzan , Azadeh Nasseri , David J Saxby , Stefanie Feih , Christopher P Carty","doi":"10.1016/j.cmpb.2024.108480","DOIUrl":"10.1016/j.cmpb.2024.108480","url":null,"abstract":"<div><div>Proximal femoral osteotomy (PFO) is a frequently performed surgical procedure to correct hip deformities in the paediatric population. The optimal size of the blade plate implant in PFO is a critical but underexplored factor influencing biomechanical outcomes. This study introduces a novel approach to refine implant selection by integrating personalized neuromusculoskeletal modelling with finite element analysis. Using computed tomography scans and walking gait data from six paediatric patients with various pathologies and deformities, we assessed the impact of four distinct implant width-to-femoral neck diameter (W-D) ratios (30 %, 40 %, 50 %, and 60 %) on surgical outcomes. The results show that the risk of implant yield generally decreases with increasing W-D ratio, except for Patient P2, where the yield risk remained below 100 % across all ratios. The implant factor of safety (FoS) increased with larger W-D ratios, except for Patients P2 and P6, where the highest FoS was 2.60 (P2) and 0.49 (P6) at a 60 % W-D ratio. Bone-implant micromotion consistently remained below 40 µm at higher W-D ratios, with a 50 % W-D ratio striking the optimal balance for mechanical stability in all patients except P6. Although interfragmentary and principal femoral strains did not display consistent trends across all patients, they highlight the need for patient-specific approaches to ensure effective fracture healing. These findings highlight the importance of patient-specific considerations in implant selection, offering surgeons a more informed pathway to enhance patient outcomes and extend implant longevity. Additionally, the insights gained from this study provide valuable guidance for manufacturers in designing next-generation blade plates tailored to improve biomechanical performance in paediatric orthopaedics.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108480"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discovering explainable biomarkers for breast cancer anti-PD1 response via network Shapley value analysis","authors":"Chenxi Sun, Zhi-Ping Liu","doi":"10.1016/j.cmpb.2024.108481","DOIUrl":"10.1016/j.cmpb.2024.108481","url":null,"abstract":"<div><h3>Background and objective</h3><div>Immunotherapy holds promise in enhancing pathological complete response rates in breast cancer, albeit confined to a select cohort of patients. Consequently, pinpointing factors predictive of treatment responsiveness is of paramount importance. Gene expression and regulation, inherently operating within intricate networks, constitute fundamental molecular machinery for cellular processes and often serve as robust biomarkers. Nevertheless, contemporary feature selection approaches grapple with two key challenges: opacity in modeling and scarcity in accounting for gene-gene interactions</div></div><div><h3>Methods</h3><div>To address these limitations, we devise a novel feature selection methodology grounded in cooperative game theory, harmoniously integrating with sophisticated machine learning models. This approach identifies interconnected gene regulatory network biomarker modules with priori genetic linkage architecture. Specifically, we leverage Shapley values on network to quantify feature importance, while strategically constraining their integration based on network expansion principles and nodal adjacency, thereby fostering enhanced interpretability in feature selection. We apply our methods to a publicly available single-cell RNA sequencing dataset of breast cancer immunotherapy responses, using the identified feature gene set as biomarkers. Functional enrichment analysis with independent validations further illustrates their effective predictive performance</div></div><div><h3>Results</h3><div>We demonstrate the sophistication and excellence of the proposed method in data with network structure. It unveiled a cohesive biomarker module encompassing 27 genes for immunotherapy response. Notably, this module proves adept at precisely predicting anti-PD1 therapeutic outcomes in breast cancer patients with classification accuracy of 0.905 and AUC value of 0.971, underscoring its unique capacity to illuminate gene functionalities</div></div><div><h3>Conclusion</h3><div>The proposed method is effective for identifying network module biomarkers, and the detected anti-PD1 response biomarkers can enrich our understanding of the underlying physiological mechanisms of immunotherapy, which have a promising application for realizing precision medicine.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108481"},"PeriodicalIF":4.9,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junqi Wang , Hailong Li , Kim M Cecil , Mekibib Altaye , Nehal A Parikh , Lili He
{"title":"DFC-Igloo: A dynamic functional connectome learning framework for identifying neurodevelopmental biomarkers in very preterm infants","authors":"Junqi Wang , Hailong Li , Kim M Cecil , Mekibib Altaye , Nehal A Parikh , Lili He","doi":"10.1016/j.cmpb.2024.108479","DOIUrl":"10.1016/j.cmpb.2024.108479","url":null,"abstract":"<div><h3>Background and Objective</h3><div>Very preterm infants are susceptible to neurodevelopmental impairments, necessitating early detection of prognostic biomarkers for timely intervention. The study aims to explore possible functional biomarkers for very preterm infants at born that relate to their future cognitive and motor development using resting-state fMRI. Prior studies are limited by the sample size and suffer from efficient functional connectome (FC) construction algorithms that can handle the noisy data contained in neonatal time series, leading to equivocal findings. Therefore, we first propose an enhanced functional connectome construction algorithm as a prerequisite step. We then apply the new FC construction algorithm to our large prospective very preterm cohort to explore multi-level neurodevelopmental biomarkers.</div></div><div><h3>Methods</h3><div>There exists an intrinsic relationship between the structural connectome (SC) and FC, with a notable coupling between the two. This observation implies a putative property of graph signal smoothness on the SC as well. Yet, this property has not been fully exploited for constructing intrinsic dFC. In this study, we proposed an advanced dynamic FC (dFC) learning model, dFC-Igloo, which leveraged SC information to iteratively refine dFC estimations by applying graph signal smoothness to both FC and SC. The model was evaluated on artificial small-world graphs and simulated graph signals.</div></div><div><h3>Results</h3><div>The proposed model achieved the best and most robust recovery of the ground truth graph across different noise levels and simulated SC pairs from the simulation. The model was further applied to a cohort of very preterm infants from five Neonatal Intensive Care Units, where an enhanced dFC was obtained for each infant. Based on the improved dFC, we identified neurodevelopmental biomarkers for neonates across connectome-wide, regional, and subnetwork scales.</div></div><div><h3>Conclusion</h3><div>The identified markers correlate with cognitive and motor developmental outcomes, offering insights into early brain development and potential neurodevelopmental challenges.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108479"},"PeriodicalIF":4.9,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianye Shi , Kiran Manjunatha , Felix Vogt , Stefanie Reese
{"title":"Data-driven reduced order surrogate modeling for coronary in-stent restenosis","authors":"Jianye Shi , Kiran Manjunatha , Felix Vogt , Stefanie Reese","doi":"10.1016/j.cmpb.2024.108466","DOIUrl":"10.1016/j.cmpb.2024.108466","url":null,"abstract":"<div><h3>Background:</h3><div>The intricate process of coronary in-stent restenosis (ISR) involves the interplay between different mediators, including platelet-derived growth factor, transforming growth factor-<span><math><mi>β</mi></math></span>, extracellular matrix, smooth muscle cells, endothelial cells, and drug elution from the stent. Modeling such complex multiphysics phenomena demands extensive computational resources and time.</div></div><div><h3>Methods:</h3><div>This paper proposes a novel non-intrusive data-driven reduced order modeling approach for the underlying multiphysics time-dependent parametrized problem. In the offline phase, a 3D convolutional autoencoder, comprising an encoder and decoder, is trained to achieve dimensionality reduction. The encoder condenses the full-order solution into a lower-dimensional latent space, while the decoder facilitates the reconstruction of the full solution from the latent space. To deal with the 5D input datasets (3D geometry + time series + multiple output channels), two ingredients are explored. The first approach incorporates time as an additional parameter and applies 3D convolution on individual time steps, encoding a distinct latent variable for each parameter instance within each time step. The second approach reshapes the 3D geometry into a 2D plane along a less interactive axis and stacks all time steps in the third direction for each parameter instance. This rearrangement generates a larger and complete dataset for one parameter instance, resulting in a singular latent variable across the entire discrete time-series. In both approaches, the multiple outputs are considered automatically in the convolutions. Moreover, Gaussian process regression is applied to establish correlations between the latent variable and the input parameter.</div></div><div><h3>Results:</h3><div>The constitutive model reveals a significant acceleration in neointimal growth between <span><math><mrow><mn>30</mn><mo>−</mo><mn>60</mn></mrow></math></span> days post percutaneous coronary intervention (PCI). The surrogate models applying both approaches exhibit high accuracy in pointwise error, with the first approach showcasing smaller errors across the entire evaluation period for all outputs. The parameter study on drug dosage against ISR rates provides noteworthy insights of neointimal growth, where the nonlinear dependence of ISR rates on the peak drug flux exhibits intriguing periodic patterns. Applying the trained model, the rate of ISR is effectively evaluated, and the optimal parameter range for drug dosage is identified.</div></div><div><h3>Conclusion:</h3><div>The demonstrated non-intrusive reduced order surrogate model proves to be a powerful tool for predicting ISR outcomes. Moreover, the proposed method lays the foundation for real-time simulations and optimization of PCI parameters.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108466"},"PeriodicalIF":4.9,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abouzar Kaboudian , Richard A. Gray , Ilija Uzelac , Elizabeth M. Cherry , Flavio. H. Fenton
{"title":"Fast interactive simulations of cardiac electrical activity in anatomically accurate heart structures by compressing sparse uniform cartesian grids","authors":"Abouzar Kaboudian , Richard A. Gray , Ilija Uzelac , Elizabeth M. Cherry , Flavio. H. Fenton","doi":"10.1016/j.cmpb.2024.108456","DOIUrl":"10.1016/j.cmpb.2024.108456","url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Numerical simulations are valuable tools for studying cardiac arrhythmias. Not only do they complement experimental studies, but there is also an increasing expectation for their use in clinical applications to guide patient-specific procedures. However, numerical studies that solve the reaction–diffusion equations describing cardiac electrical activity remain challenging to set up, are time-consuming, and in many cases, are prohibitively computationally expensive for long studies. The computational cost of cardiac simulations of complex models on anatomically accurate structures necessitates parallel computing. Graphics processing units (GPUs), which have thousands of cores, have been introduced as a viable technology for carrying out fast cardiac simulations, sometimes including real-time interactivity. Our main objective is to increase the performance and accuracy of such GPU implementations while conserving computational resources.</div></div><div><h3>Methods:</h3><div>In this work, we present a compression algorithm that can be used to conserve GPU memory and improve efficiency by managing the sparsity that is inherent in using Cartesian grids to represent cardiac structures directly obtained from high-resolution MRI and mCT scans. Furthermore, we present a discretization scheme that includes the cross-diagonal terms in the computational cell to increase numerical accuracy, which is especially important for simulating thin tissue sections without the need for costly mesh refinement.</div></div><div><h3>Results:</h3><div>Interactive WebGL simulations of atrial/ventricular structures (on PCs, laptops, tablets, and phones) demonstrate the algorithm’s ability to reduce memory demand by an order of magnitude and achieve calculations up to 20x faster. We further showcase its superiority in slender tissues and validate results against experiments performed in live explanted human hearts.</div></div><div><h3>Conclusions:</h3><div>In this work, we present a compression algorithm that accelerates electrical activity simulations on realistic anatomies by an order of magnitude (up to 20x), thereby allowing the use of finer grid resolutions while conserving GPU memory. Additionally, improved accuracy is achieved through cross-diagonal terms, which are essential for thin tissues, often found in heart structures such as pectinate muscles and trabeculae, as well as Purkinje fibers. Our method enables interactive simulations with even interactive domain boundary manipulation (unlike finite element/volume methods). Finally, agreement with experiments and ease of mesh import into WebGL paves the way for virtual cohorts and digital twins, aiding arrhythmia analysis and personalized therapies.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108456"},"PeriodicalIF":4.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiaying Liu , Anna Corti , Valentina D.A. Corino , Luca Mainardi
{"title":"Lung nodule classification using radiomics model trained on degraded SDCT images","authors":"Jiaying Liu , Anna Corti , Valentina D.A. Corino , Luca Mainardi","doi":"10.1016/j.cmpb.2024.108474","DOIUrl":"10.1016/j.cmpb.2024.108474","url":null,"abstract":"<div><h3>Background and objective</h3><div>Low-dose computed tomography (LDCT) screening has shown promise in reducing lung cancer mortality; however, it suffers from high false positive rates and a scarcity of available annotated datasets. To overcome these challenges, we propose a novel approach using synthetic LDCT images generated from standard-dose CT (SDCT) scans from the LIDC-IDRI dataset. Our objective is to develop and validate an interpretable radiomics-based model for distinguishing likely benign from likely malignant pulmonary nodules.</div></div><div><h3>Methods</h3><div>From a total of 1010 CT images (695 SDCTs and 315 LDCTs), we degraded SDCTs in the sinogram domain and obtained 1950 nodules as the training set. The 675 nodules from the LDCTs were stratified into 50%-50% partitions for validation and testing. Radiomic features were extracted from nodules, and three feature sets were assessed using: a) only shape and size (SS) features, b) all features but SS features, and c) all features. A systematic pipeline was developed to optimize the feature set and evaluate multiple machine learning models. Models were trained using degraded SDCT, validated and tested on the LDCT nodules.</div></div><div><h3>Results</h3><div>Training a logistic regression model using three SS features yielded the most promising results, achieving on the test set mean balanced accuracy, sensitivity, specificity, and AUC-ROC scores of 0.81, 0.76, 0.85, and 0.87, respectively.</div></div><div><h3>Conclusions</h3><div>Our study demonstrates the feasibility and effectiveness of using synthetic LDCT images for developing a relatively accurate radiomics-based model in lung nodule classification. This approach addresses challenges associated with LDCT screening, offering potential implications for improving lung cancer detection and reducing false positives.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108474"},"PeriodicalIF":4.9,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Online tree-structure-constrained RPCA for background subtraction of X-ray coronary angiography images","authors":"Saeid Shakeri, Farshad Almasganj","doi":"10.1016/j.cmpb.2024.108463","DOIUrl":"10.1016/j.cmpb.2024.108463","url":null,"abstract":"<div><h3>Background and objective</h3><div>Background subtraction of X-ray coronary angiograms (XCA) can significantly improve the diagnosis and treatment of coronary vessel diseases. The XCA background is complex and dynamic due to structures with different intensities and independent motion patterns, making XCA background subtraction challenging.</div></div><div><h3>Methods</h3><div>The current work proposes an online tree-structure-constrained robust PCA (OTS-RPCA) method to subtract the XCA background. A morphological closing operation is used as a pre-processing step to remove large-scale structures like the spine, chest and diaphragm. In the following, the XCA sequence is decomposed into three different subspaces: low-rank background, residual dynamic background and vascular foreground. A tree-structured norm is introduced and applied to the vascular submatrix to guarantee the vessel spatial coherency. Moreover, the residual dynamic background is separately extracted to remove noise and motion artifacts from the vascular foreground. The proposed algorithm also employs an adaptive regularization coefficient that tracks the vessel area changes in the XCA frames.</div></div><div><h3>Results</h3><div>The proposed method is evaluated on two datasets of real clinical and synthetic low-contrast XCA sequences of 38 patients using the global and local contrast-to-noise ratio (CNR) and structural similarity index (SSIM) criteria. For the real XCA dataset, the average values of global CNR, local CNR and SSIM are 6.27, 3.07 and 0.97, while these values over the synthetic low-contrast dataset are obtained as 5.15, 2.69 and 0.94, respectively. The implemented quantitative and qualitative experiments verify the superiority of the proposed method over seven selected state-of-the-art methods in increasing the coronary vessel contrast and preserving the vessel structure.</div></div><div><h3>Conclusions</h3><div>The proposed OTS-RPCA background subtraction method accurately subtracts backgrounds from XCA images. Our method might provide the basis for reducing the contrast agent dose and the number of needed injections in coronary interventions.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"258 ","pages":"Article 108463"},"PeriodicalIF":4.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing cross-domain robustness in phonocardiogram signal classification using domain-invariant preprocessing and transfer learning","authors":"Arnab Maity, Goutam Saha","doi":"10.1016/j.cmpb.2024.108462","DOIUrl":"10.1016/j.cmpb.2024.108462","url":null,"abstract":"<div><h3>Background and objective:</h3><div>Phonocardiogram (PCG) signal analysis is a non-invasive and cost-efficient approach for diagnosing cardiovascular diseases. Existing PCG-based approaches employ signal processing and machine learning (ML) for automatic disease detection. However, machine learning techniques are known to underperform in cross-corpora arrangements. A drastic effect on disease detection performance is observed when training and testing sets come from different PCG databases with varying data acquisition settings. This study investigates the impact of data acquisition parameter variations in the PCG data across different databases and develops methods to achieve robustness against these variations.</div></div><div><h3>Methods:</h3><div>To alleviate the effect of dataset-induced variations, it employs a combination of three strategies: domain-invariant preprocessing, transfer learning, and domain-balanced variable hop fragment selection (DBVHFS). The domain-invariant preprocessing normalizes the PCG to reduce the stethoscope and environment-induced variations. The transfer learning utilizes a pre-trained model trained on diverse audio data to reduce the impact of data variability by generalizing feature representations. DBVHFS facilitates unbiased fine-tuning of the pre-trained model by balancing the training fragments across all domains, ensuring equal distribution from each class.</div></div><div><h3>Results:</h3><div>The proposed method is evaluated on six independent PhysioNet/CinC Challenge <span><math><mrow><mn>2016</mn></mrow></math></span> PCG databases using leave-one-dataset-out cross-validation. Results indicate that our system outperforms the existing study with a relative improvement of <strong>5.92%</strong> in unweighted average recall and <strong>17.71%</strong> in sensitivity.</div></div><div><h3>Conclusions:</h3><div>The methods proposed in this study address variations in PCG data originating from different sources, potentially enhancing the implementation possibility of automated cardiac screening systems in real-life scenarios.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108462"},"PeriodicalIF":4.9,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heming Cheng , Dongfang Ding , Jifeng Dai , Gen Li , Ke Zhang , Jianyun Li , Liuchuang Wei , Xue Zhang , Jie Hou
{"title":"Effect of a reduced arterial axial pre-stretch ratio during aging on the cardiac output and cerebral blood flow in the healthy elders","authors":"Heming Cheng , Dongfang Ding , Jifeng Dai , Gen Li , Ke Zhang , Jianyun Li , Liuchuang Wei , Xue Zhang , Jie Hou","doi":"10.1016/j.cmpb.2024.108468","DOIUrl":"10.1016/j.cmpb.2024.108468","url":null,"abstract":"<div><h3>Background and objective</h3><div>It is an indisputable physiological phenomenon that the arterial axial pre-stretch ratio (AAPSR) decreases with age, but little attention has been paid to the effect of this reduction on chronic diseases during aging.</div></div><div><h3>Methods</h3><div>Here we reported an experimental method to simulate arteries aging, developed a fluid-structure interaction model with the effect of AAPSR changes, and compared it with the anatomy data and structural parameters of the human thoracic aorta.</div></div><div><h3>Results</h3><div>We showed that with the process of aging, the decrease of AAPSR leads to a decline of arterial elasticity, a decrease of arterial elastic strain energy, which weakens the ability to promote blood circulation, the corresponding decrease in cardiac output (CO) and cerebral blood flow (CBF) causes distal organ and body tissue ischemia, which is one of the main causes of increased blood pressure and decreased cerebral perfusion in the elderly.</div></div><div><h3>Conclusions</h3><div>Thus, reduced AAPSR is the one of main manifestation of arteries aging and has an important impact on hypertension and hypoperfusion of the brain in the process of human aging. The research contributes to a better understanding of the physiological and pathological mechanisms of aging-related diseases.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108468"},"PeriodicalIF":4.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-scale dual-channel feature embedding decoder for biomedical image segmentation","authors":"Rohit Agarwal , Palash Ghosal , Anup K. Sadhu , Narayan Murmu , Debashis Nandi","doi":"10.1016/j.cmpb.2024.108464","DOIUrl":"10.1016/j.cmpb.2024.108464","url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Attaining global context along with local dependencies is of paramount importance for achieving highly accurate segmentation of objects from image frames and is challenging while developing deep learning-based biomedical image segmentation. Several transformer-based models have been proposed to handle this issue in biomedical image segmentation. Despite this, segmentation accuracy remains an ongoing challenge, as these models often fall short of the target range due to their limited capacity to capture critical local and global contexts. However, the quadratic computational complexity is the main limitation of these models. Moreover, a large dataset is required to train those models.</div></div><div><h3>Methods:</h3><div>In this paper, we propose a novel multi-scale dual-channel decoder to mitigate this issue. The complete segmentation model uses two parallel encoders and a dual-channel decoder. The encoders are based on convolutional networks, which capture the features of the input images at multiple levels and scales. The decoder comprises a hierarchy of Attention-gated Swin Transformers with a fine-tuning strategy. The hierarchical Attention-gated Swin Transformers implements a multi-scale, multi-level feature embedding strategy that captures short and long-range dependencies and leverages the necessary features without increasing computational load. At the final stage of the decoder, a fine-tuning strategy is implemented that refines the features to keep the rich features and reduce the possibility of over-segmentation.</div></div><div><h3>Results:</h3><div>The proposed model is evaluated on publicly available LiTS, 3DIRCADb, and spleen datasets obtained from Medical Segmentation Decathlon. The model is also evaluated on a private dataset from Medical College Kolkata, India. We observe that the proposed model outperforms the state-of-the-art models in liver tumor and spleen segmentation in terms of evaluation metrics at a comparative computational cost.</div></div><div><h3>Conclusion:</h3><div>The novel dual-channel decoder embeds multi-scale features and creates a representation of both short and long-range contexts efficiently. It also refines the features at the final stage to select only necessary features. As a result, we achieve better segmentation performance than the state-of-the-art models.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108464"},"PeriodicalIF":4.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}