Comprehensive Physiology最新文献

筛选
英文 中文
Kidney Lymphatics. 肾淋巴管。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2023-06-26 DOI: 10.1002/cphy.c220029
Peter S Russell, Max Itkin, John A Windsor, Anthony R J Phillips
{"title":"Kidney Lymphatics.","authors":"Peter S Russell,&nbsp;Max Itkin,&nbsp;John A Windsor,&nbsp;Anthony R J Phillips","doi":"10.1002/cphy.c220029","DOIUrl":"https://doi.org/10.1002/cphy.c220029","url":null,"abstract":"<p><p>Following significant advances in lymphatic biology, the important role of kidney lymphatics in kidney function and dysfunction is now being more fully appreciated. Kidney lymphatics begin in the cortex as blind-ended lymphatic capillaries and then coalesce into larger lymphatics that follow the main blood vessels out through the kidney hilum. Their function in draining interstitial fluid, macromolecules, and cells underpins their important role in kidney fluid and immune homeostasis. This article provides a comprehensive overview of recent and more established research findings on kidney lymphatics and the implications of these findings for kidney function and disease. The use of lymphatic molecular markers has greatly expanded our knowledge of the development, anatomy, and pathophysiology of kidney lymphatics. Significant recent discoveries include the diverse embryological source of kidney lymphatics, the hybrid nature of the ascending vasa recta, and the effects of lymphangiogenesis on kidney diseases such as acute kidney injury and renal fibrosis. On the basis of these recent advances, there is now an opportunity to link information from across multiple research disciplines to drive a new era of lymphatic-targeted therapies for kidney disease. © 2023 American Physiological Society. Compr Physiol 13:4945-4984, 2023.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9714169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Energetic Stress-Induced Metabolic Regulation by Extracellular Vesicles. 细胞外囊泡对能量应激诱导的代谢调节。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2023-06-26 DOI: 10.1002/cphy.c230001
Clair Crewe
{"title":"Energetic Stress-Induced Metabolic Regulation by Extracellular Vesicles.","authors":"Clair Crewe","doi":"10.1002/cphy.c230001","DOIUrl":"https://doi.org/10.1002/cphy.c230001","url":null,"abstract":"<p><p>Recent studies have demonstrated that extracellular vesicles (EVs) serve powerful and complex functions in metabolic regulation and metabolic-associated disease, although this field of research is still in its infancy. EVs are released into the extracellular space from all cells and carry a wide range of cargo including miRNAs, mRNA, DNA, proteins, and metabolites that have robust signaling effects in receiving cells. EV production is stimulated by all major stress pathways and, as such, has a role in both restoring homeostasis during stress and perpetuating disease. In metabolic regulation, the dominant stress signal is a lack of energy due to either nutrient deficits or damaged mitochondria from nutrient excess. This stress signal is termed \"energetic stress,\" which triggers a robust and evolutionarily conserved response that engages major cellular stress pathways, the ER unfolded protein response, the hypoxia response, the antioxidant response, and autophagy. This article proposes the model that energetic stress is the dominant stimulator of EV release with a focus on metabolically important cells such as hepatocytes, adipocytes, myocytes, and pancreatic β-cells. Furthermore, this article will discuss how the cargo in stress-stimulated EVs regulates metabolism in receiving cells in both beneficial and detrimental ways. © 2023 American Physiological Society. Compr Physiol 13:5051-5068, 2023.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414774/pdf/nihms-1919540.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10323818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Extracellular Vesicle MicroRNA in the Kidney. 肾脏中的细胞外囊泡 MicroRNA
IF 4.2 2区 医学
Comprehensive Physiology Pub Date : 2023-06-26 DOI: 10.1002/cphy.c220023
Sekyung Oh, Chang M Lee, Sang-H Kwon
{"title":"Extracellular Vesicle MicroRNA in the Kidney.","authors":"Sekyung Oh, Chang M Lee, Sang-H Kwon","doi":"10.1002/cphy.c220023","DOIUrl":"10.1002/cphy.c220023","url":null,"abstract":"<p><p>Most cells in our body release membrane-bound, nano-sized particles into the extracellular milieu through cellular metabolic processes. Various types of macromolecules, reflecting the physiological and pathological status of the producing cells, are packaged into such so-called extracellular vesicles (EVs), which can travel over a distance to target cells, thereby transmitting donor cell information. The short, noncoding ribonucleic acid (RNA) called microRNA (miRNA) takes a crucial part in EV-resident macromolecules. Notably, EVs transferring miRNAs can induce alterations in the gene expression profiles of the recipient cells, through genetically instructed, base-pairing interaction between the miRNAs and their target cell messenger RNAs (mRNAs), resulting in either nucleolytic decay or translational halt of the engaged mRNAs. As in other body fluids, EVs released in urine, termed urinary EVs (uEVs), carry specific sets of miRNA molecules, which indicate either normal or diseased states of the kidney, the principal source of uEVs. Studies have therefore been directed to elucidate the contents and biological roles of miRNAs in uEVs and moreover to utilize the gene regulatory properties of miRNA cargos in ameliorating kidney diseases through their delivery via engineered EVs. We here review the fundamental principles of the biology of EVs and miRNA as well as our current understanding of the biological roles and applications of EV-loaded miRNAs in the kidney. We further discuss the limitations of contemporary research approaches, suggesting future directions to overcome the difficulties to advance both the basic biological understanding of miRNAs in EVs and their clinical applications in treating kidney diseases. © 2023 American Physiological Society. Compr Physiol 13:4833-4850, 2023.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9714170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gallstone and Gallbladder Disease: Biliary Tract and Cholangiopathies. 胆结石和胆囊疾病:胆道和胆管疾病。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2023-06-26 DOI: 10.1002/cphy.c220028
Ludovica Ceci, Yuyan Han, Kelsey Krutsinger, Leonardo Baiocchi, Nan Wu, Debjyoti Kundu, Konstantina Kyritsi, Tianhao Zhou, Eugenio Gaudio, Heather Francis, Gianfranco Alpini, Lindsey Kennedy
{"title":"Gallstone and Gallbladder Disease: Biliary Tract and Cholangiopathies.","authors":"Ludovica Ceci, Yuyan Han, Kelsey Krutsinger, Leonardo Baiocchi, Nan Wu, Debjyoti Kundu, Konstantina Kyritsi, Tianhao Zhou, Eugenio Gaudio, Heather Francis, Gianfranco Alpini, Lindsey Kennedy","doi":"10.1002/cphy.c220028","DOIUrl":"10.1002/cphy.c220028","url":null,"abstract":"<p><p>Cholestatic liver diseases are named primarily due to the blockage of bile flow and buildup of bile acids in the liver. Cholestasis can occur in cholangiopathies, fatty liver diseases, and during COVID-19 infection. Most literature evaluates damage occurring to the intrahepatic biliary tree during cholestasis; however, there may be associations between liver damage and gallbladder damage. Gallbladder damage can manifest as acute or chronic inflammation, perforation, polyps, cancer, and most commonly gallstones. Considering the gallbladder is an extension of the intrahepatic biliary network, and both tissues are lined by biliary epithelial cells that share common mechanisms and properties, it is worth further evaluation to understand the association between bile duct and gallbladder damage. In this comprehensive article, we discuss background information of the biliary tree and gallbladder, from function, damage, and therapeutic approaches. We then discuss published findings that identify gallbladder disorders in various liver diseases. Lastly, we provide the clinical aspect of gallbladder disorders in liver diseases and ways to enhance diagnostic and therapeutic approaches for congruent diagnosis. © 2023 American Physiological Society. Compr Physiol 13:4909-4943, 2023.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9714173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information. 问题的信息。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2023-06-26 DOI: 10.1002/cphy.cv13i03
{"title":"Issue Information.","authors":"","doi":"10.1002/cphy.cv13i03","DOIUrl":"https://doi.org/10.1002/cphy.cv13i03","url":null,"abstract":"","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10060607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exercise and Experiments of Nature. 大自然的锻炼和实验。
IF 4.2 2区 医学
Comprehensive Physiology Pub Date : 2023-06-26 DOI: 10.1002/cphy.c220027
Michael J Joyner, Chad C Wiggins, Sarah E Baker, Stephen A Klassen, Jonathon W Senefeld
{"title":"Exercise and Experiments of Nature.","authors":"Michael J Joyner, Chad C Wiggins, Sarah E Baker, Stephen A Klassen, Jonathon W Senefeld","doi":"10.1002/cphy.c220027","DOIUrl":"10.1002/cphy.c220027","url":null,"abstract":"<p><p>In this article, we highlight the contributions of passive experiments that address important exercise-related questions in integrative physiology and medicine. Passive experiments differ from active experiments in that passive experiments involve limited or no active intervention to generate observations and test hypotheses. Experiments of nature and natural experiments are two types of passive experiments. Experiments of nature include research participants with rare genetic or acquired conditions that facilitate exploration of specific physiological mechanisms. In this way, experiments of nature are parallel to classical \"knockout\" animal models among human research participants. Natural experiments are gleaned from data sets that allow population-based questions to be addressed. An advantage of both types of passive experiments is that more extreme and/or prolonged exposures to physiological and behavioral stimuli are possible in humans. In this article, we discuss a number of key passive experiments that have generated foundational medical knowledge or mechanistic physiological insights related to exercise. Both natural experiments and experiments of nature will be essential to generate and test hypotheses about the limits of human adaptability to stressors like exercise. © 2023 American Physiological Society. Compr Physiol 13:4879-4907, 2023.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9714171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Single-Cell Technologies for Exploring Gastrointestinal Tissue Transcriptome. 探索胃肠道组织转录组的空间单细胞技术。
IF 4.2 2区 医学
Comprehensive Physiology Pub Date : 2023-06-26 DOI: 10.1002/cphy.c210053
Hyun Min Kang, Jun Hee Lee
{"title":"Spatial Single-Cell Technologies for Exploring Gastrointestinal Tissue Transcriptome.","authors":"Hyun Min Kang, Jun Hee Lee","doi":"10.1002/cphy.c210053","DOIUrl":"10.1002/cphy.c210053","url":null,"abstract":"<p><p>In the gastrointestinal (GI) system, like in other organ systems, the histological structure is a key determinant of physiological function. Tissues form multiple layers in the GI tract to perform their specialized functions in secretion, absorption, and motility. Even at the single layer, the heterogeneous cell population performs a diverse range of digestive or regulatory functions. Although many details of such functions at the histological and cell biological levels were revealed by traditional methods such as cell sorting, isolation, and culture, as well as histological methods such as immunostaining and RNA in situ hybridization, recent advances in spatial single-cell technologies could further contribute to our understanding of the molecular makeup of GI histological structures by providing a genome-wide overview of how different genes are expressed across individual cells and tissue layers. The current minireview summarizes recent advances in the spatial transcriptomics field and discusses how such technologies can promote our understanding of GI physiology. © 2023 American Physiological Society. Compr Physiol 13:4709-4718, 2023.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386894/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9892909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insulin Regulation of Hepatic Lipid Homeostasis. 胰岛素对肝脂平衡的调节
IF 4.2 2区 医学
Comprehensive Physiology Pub Date : 2023-06-26 DOI: 10.1002/cphy.c220015
Kahealani Uehara, Dominic Santoleri, Anna E Garcia Whitlock, Paul M Titchenell
{"title":"Insulin Regulation of Hepatic Lipid Homeostasis.","authors":"Kahealani Uehara, Dominic Santoleri, Anna E Garcia Whitlock, Paul M Titchenell","doi":"10.1002/cphy.c220015","DOIUrl":"10.1002/cphy.c220015","url":null,"abstract":"<p><p>The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9714172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathogenesis of E-Cigarette Vaping Product Use-Associated Lung Injury (EVALI). 电子烟雾化产品使用相关肺损伤(EVALI)的发病机制。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2023-03-30 DOI: 10.1002/cphy.c220022
Irina Petrache, Arnav Gupta, Patrick S Hume, Tanner Rivera, Kelly S Schweitzer, Hong Wei Chu
{"title":"Pathogenesis of E-Cigarette Vaping Product Use-Associated Lung Injury (EVALI).","authors":"Irina Petrache,&nbsp;Arnav Gupta,&nbsp;Patrick S Hume,&nbsp;Tanner Rivera,&nbsp;Kelly S Schweitzer,&nbsp;Hong Wei Chu","doi":"10.1002/cphy.c220022","DOIUrl":"https://doi.org/10.1002/cphy.c220022","url":null,"abstract":"<p><p>EVALI is an acute inflammatory disease in response to lung cell injury induced by electronic cigarettes and vaping devices (EV) frequently containing Vitamin E Acetate or tetrahydrocannabinol additives, in the context of risk factors such as microbial exposure. EVALI resembles a respiratory viral illness that may progress to acute respiratory failure and acute respiratory distress syndrome (ARDS) but can also affect extra pulmonary organs. Manifestations may be severe, leading to death or long-term morbidity and current treatments are largely supportive. While COVID-19 has demanded public and research attention, EVALI continues to affect young individuals and its better understanding via research remains a priority. Although clinical research led to improved recognition of triggers, clinical and pathological manifestations, and natural course of EVALI, important questions remain that require a better understanding of disease pathogenesis. Preclinical models utilizing laboratory animals and cell or tissue culture platforms provide insight into the physiologic and mechanistic consequences of acute and chronic EV exposure, including the characteristics of the respiratory dysfunction and inflammatory response. However, a key limitation in the field is the absence of an established animal model of EVALI. Important areas of research emphasis include identifying triggers and risk factors to understand why only certain vapers develop EVALI, the role of specific lung immune and structural cells in the pathogenesis of EVALI, and the most important molecular mediators and therapeutic targets in EVALI. © 2023 American Physiological Society. Compr Physiol 13:4617-4630, 2023.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9305042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Physiology of the Wildland Firefighter: Managing Extreme Energy Demands in Hostile, Smoky, Mountainous Environments. 野外消防员的生理学:在恶劣的、烟雾弥漫的、多山的环境中管理极端的能量需求。
IF 5.8 2区 医学
Comprehensive Physiology Pub Date : 2023-03-30 DOI: 10.1002/cphy.c220016
Brent C Ruby, Robert H Coker, Joe Sol, John Quindry, Scott J Montain
{"title":"Physiology of the Wildland Firefighter: Managing Extreme Energy Demands in Hostile, Smoky, Mountainous Environments.","authors":"Brent C Ruby,&nbsp;Robert H Coker,&nbsp;Joe Sol,&nbsp;John Quindry,&nbsp;Scott J Montain","doi":"10.1002/cphy.c220016","DOIUrl":"https://doi.org/10.1002/cphy.c220016","url":null,"abstract":"<p><p>Wildland firefighters (WLFFs) are inserted as the front-line defense to minimize loss of natural resources, property, and human life when fires erupt in forested regions of the world. The WLFF occupation is physically demanding as exemplified by total daily energy expenditures that can exceed 25 MJ/day (6000 calories). WLFFs must also cope with complex physical and environmental situations (i.e., heat, altitude, smoke, compromised sleep, elevated stress) which challenge thermoregulatory responses, impair recovery, and increase short- and long-term injury/health risks while presenting logistical obstacles to nutrient and fluid replenishment. The occupation also imposes emotional strain on both the firefighter and their families. The long-term implications of wildfire management and suppression on the physical and mental health of WLFFs are significant, as the frequency and intensity of wildland fire outbreaks as well as the duration of the fire season is lengthening and expected to continue to expand over the next three decades. This article details the physical demands and emerging health concerns facing WLFFs, in addition to the challenges that the U.S. Forest Service and other international agencies must address to protect the health and performance of WLFFs and their ability to endure the strain of an increasingly dangerous work environment. © 2023 American Physiological Society. Compr Physiol 13:4587-4615, 2023.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9305036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信