ColorantsPub Date : 2023-03-02DOI: 10.3390/colorants2010007
Noah Manz, P. Fuierer
{"title":"Mathematical Approach to Optimizing the Panchromatic Absorption of Natural Dye Combinations for Dye-Sensitized Solar Cells","authors":"Noah Manz, P. Fuierer","doi":"10.3390/colorants2010007","DOIUrl":"https://doi.org/10.3390/colorants2010007","url":null,"abstract":"The goal of this work was to optimize the combination of natural dyes producing panchromatic absorption matched to the AM1.5 solar spectrum for use in dye sensitized solar cells (DSSCs). Six classes of dyes (Anthocyanins, Betalins, Chlorophyll, Xanthonoids, Curcuminoids and Phycobilins) were explored. UV-Vis data and radial basis function interpolation were used to model the absorbance of 2568 combinations, and three objective functions determined the most commensurable spectrum. TiO2 anodes were sensitized with 42 dye combinations and IV measurements made on simple cells. The absorbance-optimized combination yielded an efficiency of only 0.41%, compared to 1.31% for a simple 1:1 molar ratio of Curcuminoids and α-Mangostin, which showed symbiotic effects. Our results indicate that panchromatic absorption alone is not sufficient to predict optimal DSSC performance, although the mathematical approach may have broader application.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72820213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2023-02-17DOI: 10.3390/colorants2010006
Siti Raihan Hamzah, Muhammad Afiq Rosli, Nadiah Sabihah Natar, Nureel Imanina Abdul Ghani, Nur Aien Muhamad, M. Azami, M. Ishak, R. Nordin, W. I. Nawawi
{"title":"The Crosslinking and Porosity Surface Effects of Photoetching Process on Immobilized Polymer-Based Titanium Dioxide for the Decolorization of Anionic Dye","authors":"Siti Raihan Hamzah, Muhammad Afiq Rosli, Nadiah Sabihah Natar, Nureel Imanina Abdul Ghani, Nur Aien Muhamad, M. Azami, M. Ishak, R. Nordin, W. I. Nawawi","doi":"10.3390/colorants2010006","DOIUrl":"https://doi.org/10.3390/colorants2010006","url":null,"abstract":"The textile industry is suffering a great challenge regarding wastewater management, primarily due to the implementation of improper systems, specifically for dye wastewater treatment. Photocatalysis is one of approaches that have been used to treat wastewater. Titanium dioxide (TiO2) was immobilized by using the dip-coating technique in this research. Epoxidized natural rubber (ENR) and polyvinyl chloride (PVC) were used as a polymer to bind the TiO2 on the glass substrate. This immobilized TiO2/ENR/PVC underwent a photoetching process at various times to study the crosslink and porosity formations. Reactive red 4 dye was used as a model pollutant for photocatalytic performance. All immobilized TiO2/ENR/PVC samples under 12, 24 and 30 h of photoetching process (TEP12, TEP24 and TEP30 samples, respectively) showed higher photocatalytic activity compared to those without photoetching process (TEP0 sample) due to the intermediate charge in crosslinking reaction after the photoetching process. The TEP24 sample showed the highest photocatalytic degradation; light harvesting; photocatalytic degradation.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84991532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2023-02-17DOI: 10.3390/colorants2010005
Jeonghee Kang, Ketevan Basilashvili, B. Yoo, Jong I. Lee
{"title":"pH-Induced Orthogonal Photoresponse of trans-Chalcone Isomers and Related Compounds in Equilibria","authors":"Jeonghee Kang, Ketevan Basilashvili, B. Yoo, Jong I. Lee","doi":"10.3390/colorants2010005","DOIUrl":"https://doi.org/10.3390/colorants2010005","url":null,"abstract":"Photoresponsive molecular devices can be a valuable tool to promote chemical changes in response to multiple signals, such as photons and pH, to deliver drugs or to detect physiological conditions in vivo. For example, trans-chalcones (Ct) from 4′-hydroxyflavylium (F1) and 7-hydroxyflavylium (F2) can undergo cis-trans isomerization by photoreaction into many different structures. The isomerization takes place at a slow rate in response to pH change; however, it can be done in seconds by photoreaction. In the investigation, as confirming the previous reports, 3-(2-hydroxy-phenyl)-1-(4-hydroxy-phenyl)-propenone, the trans-chalcone (CtF1) from F1, produces flavylium ions in pH = 1–4.5. Then, we further discovered that the flavylium quickly releases protons to yield the corresponding quinoidal base (A) in a solution of pH = 5.2 during irradiation with 350 nm. Meanwhile, the photolysis of 3-(2,4-dihydroxy-phenyl)-1-phenyl-propenone, the trans-chalcone (CtF2) from F2 at pH = 5.6, induces photoacid behavior by losing a proton from the trans-chalcone to generate Ct2−. The different outcomes of these nearly colorless chalcones under similar pH conditions and with the same photochemical conditions can be useful when yielding colored AH+, A, or Ct2− in a mildly acidic pH environment with temporal and spatial control using photochemical means.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"111 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76078224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2023-02-01DOI: 10.3390/colorants2010004
Jacques Burlot, X. Gallet, Gulsu Simsek Franci, L. Bellot‐Gurlet, P. Colomban
{"title":"Non-Invasive On-Site pXRF Analysis of Coloring Agents of Under- and Over-Glazes: Variability and Representativity of Measurements on Porcelain","authors":"Jacques Burlot, X. Gallet, Gulsu Simsek Franci, L. Bellot‐Gurlet, P. Colomban","doi":"10.3390/colorants2010004","DOIUrl":"https://doi.org/10.3390/colorants2010004","url":null,"abstract":"The study of rare objects requires the use of mobile non-invasive methods such as a portable X-ray fluorescence instrument (pXRF), but this involves an analysis from the outer surface, while the depth analyzed depends on the element measured and, in addition, the material can be very heterogeneous at different scales. The concept of elemental composition, therefore, has no “absolute” meaning for painted enamel decorations. This work evaluates this concept by comparing the pXRF measurements made with different configuration procedures, allowing to evaluate the consequences on the variability of the XRF signals, and discusses the contents of certain chemical elements. For this, two shards from the Qianlong period are analyzed, a shard of blue and white (underglazed) porcelain and a fragment of an ‘imperial’ bowl with painted enamel decoration (huafalang). The variability of measurements is compared for visually appearing homogeneous or heterogeneous areas.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"315 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91101502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2023-01-25DOI: 10.3390/colorants2010003
Coralie Pavesi, V. Flon, G. Genta‐Jouve, E. Pramil, A. Escargueil, Adeel Nasir, T. Montier, X. Franck, Soizic Prado
{"title":"Azaphilones Pigments from the Fungus Penicillium hirayamae","authors":"Coralie Pavesi, V. Flon, G. Genta‐Jouve, E. Pramil, A. Escargueil, Adeel Nasir, T. Montier, X. Franck, Soizic Prado","doi":"10.3390/colorants2010003","DOIUrl":"https://doi.org/10.3390/colorants2010003","url":null,"abstract":"The use of fungal pigments as dyes is attractive for various industries. Fungal pigments arise a strong interest because they are suitable for large-scale industrial production and have none of the drawbacks of synthetic pigments. Their advantages over synthetic or vegetal dyes mark them as a prime target. Azaphilones are fungal polyketides pigments bearing a highly oxygenated pyranoquinone bicyclic core produced by numerous species of ascomyceteous and basidiomyceteous fungi. In order to find new azaphilones dyes, the fungal strain Penicillium hirayamae U., a known producer of azaphilone but, chemically, barely studied so far, was investigated by molecular networking and led to the isolation of three new azaphilones, penazaphilone J-L, along with the known penazaphilone D, isochromophilone VI, and sclerketide E. Their structures were determined based on extensive NMR and the absolute configurations by ECD. All compounds were evaluated for their cytotoxic activity against human cell lines and human pathogenic-resistant strains.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80895799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2022-12-30DOI: 10.3390/colorants2010002
J. A. Andrés Castán, S. Abidi, Tatiana Ghanem, S. Touihri, P. Blanchard, G. Welch, Yulian Zagranyarski, J. Boixel, Bright Walker, P. Josse, C. Cabanetos
{"title":"N-Annulation of the BTI Rylene Imide Organic Building Block: Impact on the Optoelectronic Properties of π-Extended Molecular Structures","authors":"J. A. Andrés Castán, S. Abidi, Tatiana Ghanem, S. Touihri, P. Blanchard, G. Welch, Yulian Zagranyarski, J. Boixel, Bright Walker, P. Josse, C. Cabanetos","doi":"10.3390/colorants2010002","DOIUrl":"https://doi.org/10.3390/colorants2010002","url":null,"abstract":"Benzothioxanthene imide (BTI) has recently emerged as an interesting and promising block for organic electronics. In this contribution, we report on the impact of the N-annulation of the latter dye on the optoelectronic of π-extended molecular structures. To do so, the thiophene-diketopyrrolopyrrole was selected, as central π-conjugated core, and either end-capped with two BTIs or its N-annulated version, namely the TCI. While almost similar band gaps were measured for individual rylene imide dyes, significant differences were highlighted, and rationalized, on their π-extended counterparts.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89927799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2022-12-22DOI: 10.3390/colorants2010001
Abed Haddad, Toni Nakie-Miller, J. Jenks, G. Kowach
{"title":"Andy Warhol and His Amazing Technicolor Shoes: Characterizing the Synthetic Dyes Found in Dr. Ph. Martin’s Synchromatic Transparent Watercolors and Used in À la Recherche du Shoe Perdu","authors":"Abed Haddad, Toni Nakie-Miller, J. Jenks, G. Kowach","doi":"10.3390/colorants2010001","DOIUrl":"https://doi.org/10.3390/colorants2010001","url":null,"abstract":"Synthetic organic dyes were extensively used by artists in the first half of the 20th century, knowingly or otherwise. This included Andy Warhol and his À la Recherche du Shoe Perdu (c. 1955), a major portfolio of hand-colored prints, a copy of which resides in the collection of The Museum of Modern Art (MoMA). Warhol and his friends were known to use Dr. Ph. Martin’s Synchromatic Transparent Water Colors to bring these prints to life. A historical set of Synchromatic Transparent Watercolors were initially investigated by UV-visible spectroscopy, and samples from the historic set were also characterized by µ-Fourier transform infrared spectroscopy for fingerprint identification. To better elucidate the nature of the mixtures present, thin-layer chromatography was coupled with surface-enhanced Raman spectroscopy to separate the components of all colorants in the set. The dyes decisively identified include Acid Red 73, Acid Red 87, Acid Red 17, Acid Red 103, Basic Red 1, Acid Orange 7, Acid Yellow 23, Acid Green 1, Basic Green 4, Acid Blue 3, Acid Blue 93, Basic Violet 3, Basic Violet 10, Basic Violet 17, and Acid Black 2. Overall, Acid Blue 3, along with Acid Orange 7 and Acid Black 2, were found in the greatest number of dyes in the Dr. Ph. Martin’s set. Data from the historic set was subsequently used for direct comparison with reflectance spectra from the Warhol portfolio using principal component analysis. Microfade testing on a Synchromatic Transparent Watercolors brochure was also conducted to identify fugitive colorants, the results of which were extrapolated to each of the prints in the Warhol portfolio. The analysis provided further insight into the dyes used in À la Recherche du Shoe Perdu and confirmed the extreme light sensitivity of some colorants and the fastness of others.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"62 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84047936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2022-12-07DOI: 10.3390/colorants1040026
A. Križnar, F. Ager, Luis Robles Macías, Inés Ortega Feliu, B. G. Tubío, M. A. Respaldiza
{"title":"Pigments and Inks Applied in Juan Vespucci’s Portolan Chart (1520)","authors":"A. Križnar, F. Ager, Luis Robles Macías, Inés Ortega Feliu, B. G. Tubío, M. A. Respaldiza","doi":"10.3390/colorants1040026","DOIUrl":"https://doi.org/10.3390/colorants1040026","url":null,"abstract":"Not many manuscript maps have been the object of material analysis so far. A portolan chart, signed and dated by Juan Vespucci in 1520, was studied in this research, conserved at the Archivo General de Indias in Seville (Spain). It is made on parchment and depicts the coasts and islands of Europe and Africa. It is the oldest portolan chart made in Seville, being unusual in applying hand stamp for decorative figures. The map was analysed by different non-invasive techniques: infra-red and ultraviolet light, digital microscope and X-ray fluorescence (XRF). The main goals of this study were to identify the materials used, as well as to detect retouching or restoration work. Results showed that the entire parchment was first covered with a white layer made of lead white (Pb), calcite or gypsum (Ca). The principal pigments used were vermilion (Hg), yellow ochre (Fe), azurite (Cu) and a copper-based green pigment (Cu) and carbon black. The letters were probably written with an iron-gall ink (Fe, Cu). Very thin golden leaves were applied on a mixtion glue for gilded wind roses. Several retouches from the 19th/20th centuries were found using zinc and titanium whites and probably cobalt blue.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78729971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2022-11-26DOI: 10.3390/colorants1040025
Valentina Lorenzon, G. Faccio
{"title":"Tackling Colorants Sustainability Combining Disruptive Science and Sustainable Leadership: A Review Article","authors":"Valentina Lorenzon, G. Faccio","doi":"10.3390/colorants1040025","DOIUrl":"https://doi.org/10.3390/colorants1040025","url":null,"abstract":"Many pigments and dyes are not only valuable molecules in manufacturing, but also environmental pollutants. Stemming from the observation of the slow pace of change taking place to counter the ‘fast fashion’ phenomenon and its environmental consequences, this critical review highlights the importance not only of biotechnological approaches but also of a sustainable leadership to achieve a future-proof fashion industry. Science has been producing sustainable alternatives to counter the issue of dyes, but this is not enough. A change in the business attitude and leadership approach of the organizations that operate in the industry is needed. Only through the successful combination of new technologies and forward-looking decision-making will it be possible to alter the status quo and deal with the multiple environmental challenges that businesses are and will be facing.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90884755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ColorantsPub Date : 2022-10-29DOI: 10.3390/colorants1040024
P. Gora, J. Wąs-Gubała
{"title":"Selected Aspects of Forensic Discrimination of Blue and Black/Grey Cotton Fibres Derived from Denim Fabrics","authors":"P. Gora, J. Wąs-Gubała","doi":"10.3390/colorants1040024","DOIUrl":"https://doi.org/10.3390/colorants1040024","url":null,"abstract":"Fragments of single textile fibres are one of the most commonly found microtraces at crime scenes. Among them, the widespread blue and black/grey cotton fibres should be recognized. The analytical methods routinely used in fibre examination mainly focus on color assessment and determination of the fibres’ morphological features as well as chemical composition. This publication presents the physicochemical characteristics of blue and black/grey denim fabrics and fibres as well as an overview of the non-destructive and destructive methods used in the discrimination of these fibres. Usually, such fibre microtraces are very difficult to distinguish in forensic examinations due to their widespread abundance, and, thus, their evidential value is not significant. As previous research shows, most denim material samples were colored with indigo dye. However, due to the changing trends in denim production and the fashion market, indigo derivatives may play a more critical role. The literature review shows significant shortcomings in the development of techniques focusing on the analysis of the dyes contained in denim fibres, and this is a research direction worth pursuing.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"330 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86779954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}