Comput.Pub Date : 2023-08-01DOI: 10.3390/computation11080149
A. Morozov, D. Reviznikov
{"title":"Adaptive Sparse Grids with Nonlinear Basis in Interval Problems for Dynamical Systems","authors":"A. Morozov, D. Reviznikov","doi":"10.3390/computation11080149","DOIUrl":"https://doi.org/10.3390/computation11080149","url":null,"abstract":"Problems with interval uncertainties arise in many applied fields. The authors have earlier developed, tested, and proved an adaptive interpolation algorithm for solving this class of problems. The algorithm’s idea consists of constructing a piecewise polynomial function that interpolates the dependence of the problem solution on point values of interval parameters. The classical version of the algorithm uses polynomial full grid interpolation and, with a large number of uncertainties, the algorithm becomes difficult to apply due to the exponential growth of computational costs. Sparse grid interpolation requires significantly less computational resources than interpolation on full grids, so their use seems promising. A representative number of examples have previously confirmed the effectiveness of using adaptive sparse grids with a linear basis in the adaptive interpolation algorithm. The purpose of this paper is to apply adaptive sparse grids with a nonlinear basis for modeling dynamic systems with interval parameters. The corresponding interpolation polynomials on the quadratic basis and the fourth-degree basis are constructed. The efficiency, performance, and robustness of the proposed approach are demonstrated on a representative set of problems.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"48 1","pages":"149"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79753995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput.Pub Date : 2023-07-30DOI: 10.3390/computers12080154
J. Thunberg, Taqwa Saeed, G. Sidorenko, Felipe Valle, A. Vinel
{"title":"Cooperative Vehicles versus Non-Cooperative Traffic Light: Safe and Efficient Passing","authors":"J. Thunberg, Taqwa Saeed, G. Sidorenko, Felipe Valle, A. Vinel","doi":"10.3390/computers12080154","DOIUrl":"https://doi.org/10.3390/computers12080154","url":null,"abstract":"Connected and automated vehicles (CAVs) will be a key component of future cooperative intelligent transportation systems (C-ITS). Since the adoption of C-ITS is not foreseen to happen instantly, not all of its elements are going to be connected at the early deployment stages. We consider a scenario where vehicles approaching a traffic light are connected to each other, but the traffic light itself is not cooperative. Information about indented trajectories such as decisions on how and when to accelerate, decelerate and stop, is communicated among the vehicles involved. We provide an optimization-based procedure for efficient and safe passing of traffic lights (or other temporary road blockage) using vehicle-to-vehicle communication (V2V). We locally optimize objectives that promote efficiency such as less deceleration and larger minimum velocity, while maintaining safety in terms of no collisions. The procedure is computationally efficient as it mainly involves a gradient decent algorithm for one single parameter.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"35 1","pages":"154"},"PeriodicalIF":0.0,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87878392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput.Pub Date : 2023-07-29DOI: 10.3390/computers12080153
Marta Montenegro Rueda, José Fernández-Cerero, J. Fernández-Batanero, Eloy López-Meneses
{"title":"Impact of the Implementation of ChatGPT in Education: A Systematic Review","authors":"Marta Montenegro Rueda, José Fernández-Cerero, J. Fernández-Batanero, Eloy López-Meneses","doi":"10.3390/computers12080153","DOIUrl":"https://doi.org/10.3390/computers12080153","url":null,"abstract":"The aim of this study is to present, based on a systematic review of the literature, an analysis of the impact of the application of the ChatGPT tool in education. The data were obtained by reviewing the results of studies published since the launch of this application (November 2022) in three leading scientific databases in the world of education (Web of Science, Scopus and Google Scholar). The sample consisted of 12 studies. Using a descriptive and quantitative methodology, the most significant data are presented. The results show that the implementation of ChatGPT in the educational environment has a positive impact on the teaching–learning process, however, the results also highlight the importance of teachers being trained to use the tool properly. Although ChatGPT can enhance the educational experience, its successful implementation requires teachers to be familiar with its operation. These findings provide a solid basis for future research and decision-making regarding the use of ChatGPT in the educational context.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"140 1","pages":"153"},"PeriodicalIF":0.0,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79955958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput.Pub Date : 2023-07-28DOI: 10.3390/computers12080152
A. .. Gavade, R. Nerli, Neel Kanwal, Priyanka A. Gavade, Shridhar Sunilkumar Pol, Syed Sajjad Hussain Rizvi
{"title":"Automated Diagnosis of Prostate Cancer Using mpMRI Images: A Deep Learning Approach for Clinical Decision Support","authors":"A. .. Gavade, R. Nerli, Neel Kanwal, Priyanka A. Gavade, Shridhar Sunilkumar Pol, Syed Sajjad Hussain Rizvi","doi":"10.3390/computers12080152","DOIUrl":"https://doi.org/10.3390/computers12080152","url":null,"abstract":"Prostate cancer (PCa) is a significant health concern for men worldwide, where early detection and effective diagnosis can be crucial for successful treatment. Multiparametric magnetic resonance imaging (mpMRI) has evolved into a significant imaging modality in this regard, which provides detailed images of the anatomy and tissue characteristics of the prostate gland. However, interpreting mpMRI images can be challenging for humans due to the wide range of appearances and features of PCa, which can be subtle and difficult to distinguish from normal prostate tissue. Deep learning (DL) approaches can be beneficial in this regard by automatically differentiating relevant features and providing an automated diagnosis of PCa. DL models can assist the existing clinical decision support system by saving a physician’s time in localizing regions of interest (ROIs) and help in providing better patient care. In this paper, contemporary DL models are used to create a pipeline for the segmentation and classification of mpMRI images. Our DL approach follows two steps: a U-Net architecture for segmenting ROI in the first stage and a long short-term memory (LSTM) network for classifying the ROI as either cancerous or non-cancerous. We trained our DL models on the I2CVB (Initiative for Collaborative Computer Vision Benchmarking) dataset and conducted a thorough comparison with our experimental setup. Our proposed DL approach, with simpler architectures and training strategy using a single dataset, outperforms existing techniques in the literature. Results demonstrate that the proposed approach can detect PCa disease with high precision and also has a high potential to improve clinical assessment.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"78 1","pages":"152"},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89607173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput.Pub Date : 2023-07-28DOI: 10.3390/computers12080150
Xufeng Ling, Yun Zhu, W. Liu, Jingxin Liang, Jie Yang
{"title":"The Generation of Articulatory Animations Based on Keypoint Detection and Motion Transfer Combined with Image Style Transfer","authors":"Xufeng Ling, Yun Zhu, W. Liu, Jingxin Liang, Jie Yang","doi":"10.3390/computers12080150","DOIUrl":"https://doi.org/10.3390/computers12080150","url":null,"abstract":"Knowing the correct positioning of the tongue and mouth for pronunciation is crucial for learning English pronunciation correctly. Articulatory animation is an effective way to address the above task and helpful to English learners. However, articulatory animations are all traditionally hand-drawn. Different situations require varying animation styles, so a comprehensive redraw of all the articulatory animations is necessary. To address this issue, we developed a method for the automatic generation of articulatory animations using a deep learning system. Our method leverages an automatic keypoint-based detection network, a motion transfer network, and a style transfer network to generate a series of articulatory animations that adhere to the desired style. By inputting a target-style articulation image, our system is capable of producing animations with the desired characteristics. We created a dataset of articulation images and animations from public sources, including the International Phonetic Association (IPA), to establish our articulation image animation dataset. We performed preprocessing on the articulation images by segmenting them into distinct areas each corresponding to a specific articulatory part, such as the tongue, upper jaw, lower jaw, soft palate, and vocal cords. We trained a deep neural network model capable of automatically detecting the keypoints in typical articulation images. Also, we trained a generative adversarial network (GAN) model that can generate end-to-end animation of different styles automatically from the characteristics of keypoints and the learned image style. To train a relatively robust model, we used four different style videos: one magnetic resonance imaging (MRI) articulatory video and three hand-drawn videos. For further applications, we combined the consonant and vowel animations together to generate a syllable animation and the animation of a word consisting of many syllables. Experiments show that this system can auto-generate articulatory animations according to input phonetic symbols and should be helpful to people for English articulation correction.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"10 1","pages":"150"},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83269289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput.Pub Date : 2023-07-27DOI: 10.3390/computers12080149
Zoltán Richárd Jánki, Vilmos Bilicki
{"title":"The Impact of the Web Data Access Object (WebDAO) Design Pattern on Productivity","authors":"Zoltán Richárd Jánki, Vilmos Bilicki","doi":"10.3390/computers12080149","DOIUrl":"https://doi.org/10.3390/computers12080149","url":null,"abstract":"In contemporary software development, it is crucial to adhere to design patterns because well-organized and readily maintainable source code facilitates bug fixes and the development of new features. A carefully selected set of design patterns can have a significant impact on the productivity of software development. Data Access Object (DAO) is a frequently used design pattern that provides an abstraction layer between the application and the database and is present in the back-end. As serverless development arises, more and more applications are using the DAO design pattern, but it has been moved to the front-end. We refer to this pattern as WebDAO. It is evident that the DAO pattern improves development productivity, but it has never been demonstrated for WebDAO. Here, we evaluated the open source Angular projects to determine whether they use WebDAO. For automatic evaluation, we trained a Natural Language Processing (NLP) model that can recognize the WebDAO design pattern with 92% accuracy. On the basis of the results, we analyzed the entire history of the projects and presented how the WebDAO design pattern impacts productivity, taking into account the number of commits, changes, and issues.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"391 1","pages":"149"},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80752779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput.Pub Date : 2023-07-27DOI: 10.3390/computers12080148
Sarah Alkadi, Saad A. Al-Ahmadi, M. M. Ben Ismail
{"title":"Toward Improved Machine Learning-Based Intrusion Detection for Internet of Things Traffic","authors":"Sarah Alkadi, Saad A. Al-Ahmadi, M. M. Ben Ismail","doi":"10.3390/computers12080148","DOIUrl":"https://doi.org/10.3390/computers12080148","url":null,"abstract":"The rapid development of Internet of Things (IoT) networks has revealed multiple security issues. On the other hand, machine learning (ML) has proven its efficiency in building intrusion detection systems (IDSs) intended to reinforce the security of IoT networks. In fact, the successful design and implementation of such techniques require the use of effective methods in terms of data and model quality. This paper encloses an empirical impact analysis for the latter in the context of a multi-class classification scenario. A series of experiments were conducted using six ML models, along with four benchmarking datasets, including UNSW-NB15, BOT-IoT, ToN-IoT, and Edge-IIoT. The proposed framework investigates the marginal benefit of employing data pre-processing and model configurations considering IoT limitations. In fact, the empirical findings indicate that the accuracy of ML-based IDS detection rapidly increases when methods that use quality data and models are deployed. Specifically, data cleaning, transformation, normalization, and dimensionality reduction, along with model parameter tuning, exhibit significant potential to minimize computational complexity and yield better performance. In addition, MLP- and clustering-based algorithms outperformed the remaining models, and the obtained accuracy reached up to 99.97%. One should note that the performance of the challenger models was assessed using similar test sets, and this was compared to the results achieved using the relevant pieces of research.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"11 1","pages":"148"},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77138889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput.Pub Date : 2023-07-25DOI: 10.3390/computers12080147
László Göcs, Z. Johanyák
{"title":"Feature Selection with Weighted Ensemble Ranking for Improved Classification Performance on the CSE-CIC-IDS2018 Dataset","authors":"László Göcs, Z. Johanyák","doi":"10.3390/computers12080147","DOIUrl":"https://doi.org/10.3390/computers12080147","url":null,"abstract":"Feature selection is a crucial step in machine learning, aiming to identify the most relevant features in high-dimensional data in order to reduce the computational complexity of model development and improve generalization performance. Ensemble feature-ranking methods combine the results of several feature-selection techniques to identify a subset of the most relevant features for a given task. In many cases, they produce a more comprehensive ranking of features than the individual methods used alone. This paper presents a novel approach to ensemble feature ranking, which uses a weighted average of the individual ranking scores calculated using these individual methods. The optimal weights are determined using a Taguchi-type design of experiments. The proposed methodology significantly improves classification performance on the CSE-CIC-IDS2018 dataset, particularly for attack types where traditional average-based feature-ranking score combinations result in low classification metrics.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"29 1","pages":"147"},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88075894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput.Pub Date : 2023-07-23DOI: 10.3390/computation11070147
Hanna C. Villamil, H. Espitia, L. A. Bejarano
{"title":"Multiobjective Optimization of Fuzzy System for Cardiovascular Risk Classification","authors":"Hanna C. Villamil, H. Espitia, L. A. Bejarano","doi":"10.3390/computation11070147","DOIUrl":"https://doi.org/10.3390/computation11070147","url":null,"abstract":"Since cardiovascular diseases (CVDs) pose a critical global concern, identifying associated risk factors remains a pivotal research focus. This study aims to propose and optimize a fuzzy system for cardiovascular risk (CVR) classification using a multiobjective approach, addressing computational aspects such as the configuration of the fuzzy system, the optimization process, the selection of a suitable solution from the optimal Pareto front, and the interpretability of the fuzzy logic system after the optimization process. The proposed system utilizes data, including age, weight, height, gender, and systolic blood pressure to determine cardiovascular risk. The fuzzy model is based on preliminary information from the literature; therefore, to adjust the fuzzy logic system using a multiobjective approach, the body mass index (BMI) is considered as an additional output as data are available for this index, and body mass index is acknowledged as a proxy for cardiovascular risk given the propensity for these diseases attributed to surplus adipose tissue, which can elevate blood pressure, cholesterol, and triglyceride levels, leading to arterial and cardiac damage. By employing a multiobjective approach, the study aims to obtain a balance between the two outputs corresponding to cardiovascular risk classification and body mass index. For the multiobjective optimization, a set of experiments is proposed that render an optimal Pareto front, as a result, to later determine the appropriate solution. The results show an adequate optimization of the fuzzy logic system, allowing the interpretability of the fuzzy sets after carrying out the optimization process. In this way, this paper contributes to the advancement of the use of computational techniques in the medical domain.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"37 1","pages":"147"},"PeriodicalIF":0.0,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80033085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comput.Pub Date : 2023-07-22DOI: 10.3390/computers12070146
Manuel Ayala-Chauvin, Fátima Avilés-Castillo, J. Buele
{"title":"Exploring the Landscape of Data Analysis: A Review of Its Application and Impact in Ecuador","authors":"Manuel Ayala-Chauvin, Fátima Avilés-Castillo, J. Buele","doi":"10.3390/computers12070146","DOIUrl":"https://doi.org/10.3390/computers12070146","url":null,"abstract":"Data analysis is increasingly critical in aiding decision-making within public and private institutions. This paper scrutinizes the status quo of big data and data analysis and its applications within Ecuador, focusing on its societal, educational, and industrial impact. A detailed literature review was conducted from academic databases such as SpringerLink, Scopus, IEEE Xplore, Web of Science, and ACM, incorporating research from inception until May 2023. The search process adhered to the PRISMA statement, employing specific inclusion and exclusion criteria. The analysis revealed that data implementation in Ecuador, while recent, has found noteworthy applications in six principal areas, classified using ISCED: education, science, engineering, health, social, and services. In the scientific and engineering sectors, big data has notably contributed to disaster mitigation and optimizing resource allocation in smart cities. Its application in the social sector has fortified cybersecurity and election data integrity, while in services, it has enhanced residential ICT adoption and urban planning. Health sector applications are emerging, particularly in disease prediction and patient monitoring. Educational applications predominantly involve student performance analysis and curricular evaluation. This review emphasizes that while big data’s potential is being gradually realized in Ecuador, further research, data security measures, and institutional interoperability are required to fully leverage its benefits.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"10 1","pages":"146"},"PeriodicalIF":0.0,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91270597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}