Sustainable Energy & Fuels最新文献

筛选
英文 中文
A critical review of hydrogen storage: toward the nanoconfinement of complex hydrides from the synthesis and characterization perspectives 储氢评述:从合成和表征角度看复杂氢化物的纳米融合
IF 5 3区 材料科学
Sustainable Energy & Fuels Pub Date : 2024-10-01 DOI: 10.1039/D4SE00353E
Amanuel Gidey Gebretatios, Fawzi Banat and Chin Kui Cheng
{"title":"A critical review of hydrogen storage: toward the nanoconfinement of complex hydrides from the synthesis and characterization perspectives","authors":"Amanuel Gidey Gebretatios, Fawzi Banat and Chin Kui Cheng","doi":"10.1039/D4SE00353E","DOIUrl":"https://doi.org/10.1039/D4SE00353E","url":null,"abstract":"<p >To meet the growing global energy demand and keep our planet healthy, more than 10 terawatts of carbon-neutral energy will be required by 2050. H<small><sub>2</sub></small>, which has an energy density of 33.33 kW h kg<small><sup>−1</sup></small>, has been identified as a renewable and clean energy carrier to meet this energy demand and as a substitute for fossil fuels. H<small><sub>2</sub></small> storage is crucial for harnessing H<small><sub>2</sub></small> energy to its fullest potential and realizing the H<small><sub>2</sub></small> economy. Although compression and liquefaction are established H<small><sub>2</sub></small> storage techniques, safety concerns, energy consumption (up to 18 and 40% of H<small><sub>2</sub></small>'s LHV for compression and liquefaction, respectively), and boil-off losses of up to 3% per day in liquefaction remain the main limitations. Researchers currently are exploring safe, compact, and efficient solid-state H<small><sub>2</sub></small> storage methods. Complex hydrides such as LiBH<small><sub>4</sub></small>, NaBH<small><sub>4</sub></small>, LiAlH<small><sub>4</sub></small>, and NaAlH<small><sub>4</sub></small>, which are formed by the coordination of complex anions such as [BH<small><sub>4</sub></small>]<small><sup>−</sup></small> and [AlH<small><sub>4</sub></small>]<small><sup>−</sup></small> stabilized by metal cations such as Na<small><sup>+</sup></small>, Li<small><sup>+</sup></small>, Mg<small><sup>2+</sup></small>, and Ca<small><sup>2+</sup></small>, are a class of solid-state H<small><sub>2</sub></small> storage materials with promising storage capacities. In principle, most of them are capable of meeting the ultimate volumetric (0.05 kg H<small><sub>2</sub></small> per L) and gravimetric (6.5 wt%) storage capacity goals set by the U.S. DoE. However, they suffer from unfavorable thermodynamics-<em>T</em><small><sub>des</sub></small> (150–600 °C), high desorption kinetic barrier-<em>E</em><small><sub>ades</sub></small> (50–275 kJ mol<small><sup>−1</sup></small>), and limited reversibility. One intriguing approach to address these limitations is nanoconfinement in suitable host materials, benefiting from the synergetic effects of nanosizing, immobilization, destabilization, and, sometimes, catalysis for scaffolds that mutually induce catalytic effects. In this review, major H<small><sub>2</sub></small> storage techniques are briefly discussed. Developments in the nanoconfinement of complex hydrides, host materials, synthetic methods, characterizations, and advances in improving kinetics, thermodynamics, and reversibility <em>via</em> nanoconfinement are discussed. This paves the way for the use of hydrides in practical H<small><sub>2</sub></small> economy technologies, and contributes to the advancement of clean energy solutions.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 22","pages":" 5091-5130"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yeast bio-batteries† 酵母生物电池
IF 5 3区 材料科学
Sustainable Energy & Fuels Pub Date : 2024-10-01 DOI: 10.1039/D4SE00903G
Frank N. Crespilho, Ricardo Brito-Pereira, Rita Policia, Nelson Pereira, Graziela C. Sedenho, Carlos M. Costa and Senentxu Lanceros-Méndez
{"title":"Yeast bio-batteries†","authors":"Frank N. Crespilho, Ricardo Brito-Pereira, Rita Policia, Nelson Pereira, Graziela C. Sedenho, Carlos M. Costa and Senentxu Lanceros-Méndez","doi":"10.1039/D4SE00903G","DOIUrl":"https://doi.org/10.1039/D4SE00903G","url":null,"abstract":"<p >In this work, we present the development of a fully rechargeable bio-battery, powered by <em>Saccharomyces cerevisiae</em> and utilizing recyclable PET carbon-based electrodes. Through the integration of yeast with the iota-carrageenan hydrogel and potassium ferricyanide as a redox mediator, the bio-battery consistently delivers 450 mV with excellent cyclability. This eco-friendly approach demonstrates great potential for advancing sustainable energy solutions, particularly in powering low-energy applications such as biomedical devices. Ongoing advancements in membrane design are expected to significantly boost the long-term performance and operational stability of this system, further solidifying its applicability in real-world scenarios.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 22","pages":" 5165-5169"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mn-doped cobalt oxide dodecahedron nanocages as an efficient bifunctional electrocatalyst for zinc–air batteries† 掺锰氧化钴十二面体纳米笼作为锌-空气电池的高效双功能电催化剂†。
IF 5 3区 材料科学
Sustainable Energy & Fuels Pub Date : 2024-10-01 DOI: 10.1039/D4SE00956H
Sai Vani Terlapu and Ranjit Bauri
{"title":"Mn-doped cobalt oxide dodecahedron nanocages as an efficient bifunctional electrocatalyst for zinc–air batteries†","authors":"Sai Vani Terlapu and Ranjit Bauri","doi":"10.1039/D4SE00956H","DOIUrl":"https://doi.org/10.1039/D4SE00956H","url":null,"abstract":"<p >The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play a vital role in the functioning of Zn–air batteries and similar energy storage systems. These reactions are kinetically sluggish, which limits the performance of rechargeable Zn–air batteries. An effective bifunctional electrocatalyst that can replace the current noble metal based expensive systems is the need of the hour. In this study, Mn-doped cobalt oxide was synthesized using a cobalt zeolitic imidazolate framework (Co-ZIF) as a template. Mn-doped Co-ZIFs with different Co : Mn ratios (0.5, 1, and 2) were prepared using a single-pot technique and converted into corresponding Mn-doped cobalt oxides <em>via</em> calcination. Structural features were studied using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Mn-Co<small><sub>3</sub></small>O<small><sub>4</sub></small> displayed a high Brunauer–Emmett–Teller (BET) surface area of 69 m<small><sup>2</sup></small> g<small><sup>−1</sup></small> and a high pore volume. Among all the studied compositions, Mn-Co<small><sub>3</sub></small>O<small><sub>4</sub></small>-1 (Co : Mn = 1) exhibited the best performance, illustrating the crucial role of an optimum level of Mn doping. Mn-Co<small><sub>3</sub></small>O<small><sub>4</sub></small>-1 displayed a low ORR onset potential of 0.94 V and high mass transfer limited current density of 5.65 mA cm<small><sup>−2</sup></small>. The catalyst exhibited a low overpotential of 330 mV at a current density of 10 mA cm<small><sup>−2</sup></small> for the OER. It also exhibited excellent ORR and OER stability and good bifunctionality, with a potential difference of 0.71 V. This study illustrates the excellent performance of Mn-doped cobalt oxides produced using ZIF templates in oxygen electrocatalysis.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 22","pages":" 5195-5205"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Na0.5Bi0.5TiO3 perovskite anode for lithium-ion batteries† 用于锂离子电池的 Na0.5Bi0.5TiO3 包晶阳极†。
IF 5 3区 材料科学
Sustainable Energy & Fuels Pub Date : 2024-09-30 DOI: 10.1039/D4SE00935E
Sridivya Chintha, Shahan Atif, Anshuman Chaupatnaik, Alexander Golubnichiy, Artem M. Abakumov and Prabeer Barpanda
{"title":"Na0.5Bi0.5TiO3 perovskite anode for lithium-ion batteries†","authors":"Sridivya Chintha, Shahan Atif, Anshuman Chaupatnaik, Alexander Golubnichiy, Artem M. Abakumov and Prabeer Barpanda","doi":"10.1039/D4SE00935E","DOIUrl":"https://doi.org/10.1039/D4SE00935E","url":null,"abstract":"<p >Lithium-ion battery technology, currently the most popular form of mobile energy storage, primarily uses graphite as the anode. However, the graphite anode, owing to its low working voltage at high current density, is susceptible to lithium plating and related safety risks. In this direction, perovskite oxides like CaSnO<small><sub>3</sub></small>, more recently PbTiO<small><sub>3</sub></small>, have been explored as alternate anode materials due to their higher operational voltage. Extending this family of perovskites, we introduce a widely used lead-free piezoelectric ceramic Na<small><sub>0.5</sub></small>Bi<small><sub>0.5</sub></small>TiO<small><sub>3</sub></small> (NBT) as a potential anode for lithium-ion batteries. NBT has an average voltage of 0.7 V and a high capacity of 220 mA h g<small><sup>−1</sup></small>. <em>Ex situ</em> diffraction and spectroscopy tools were used to understand the charge storage mechanism. The oxide undergoes an irreversible conversion reaction in the first discharge, followed by reversible (de)alloying of Bi with Li in the subsequent cycles. This material is airstable, with a capacity retention of 82% up to 50 cycles at a high current of 100 mA g<small><sup>−1</sup></small> without any optimization. Furthermore, limiting the voltage window increases the cycle life to 200 cycles. Perovskite-type Na<small><sub>0.5</sub></small>Bi<small><sub>0.5</sub></small>TiO<small><sub>3</sub></small> is proposed as a new Bi-based conversion alloying anode for lithium-ion batteries.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 21","pages":" 5058-5064"},"PeriodicalIF":5.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/se/d4se00935e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the reactivity of CO2 with carbanions: a theoretical analysis of the carboxylation step† 揭示二氧化碳与碳离子的反应性:羧化步骤的理论分析†
IF 5 3区 材料科学
Sustainable Energy & Fuels Pub Date : 2024-09-26 DOI: 10.1039/D4SE01065E
Catia Nicoletti, Manuel Orlandi, Luca Dell'Amico and Andrea Sartorel
{"title":"Unveiling the reactivity of CO2 with carbanions: a theoretical analysis of the carboxylation step†","authors":"Catia Nicoletti, Manuel Orlandi, Luca Dell'Amico and Andrea Sartorel","doi":"10.1039/D4SE01065E","DOIUrl":"https://doi.org/10.1039/D4SE01065E","url":null,"abstract":"<p >The synthetic insertion of carbon dioxide into organic scaffolds typically requires the reaction of CO<small><sub>2</sub></small> with a carbanion (carboxylation step), with the latter being generated through chemical, electrochemical, or photochemical routes. Still, little is known about the energetic and structural requirements of this step. In this work, we unveil the reactivity of CO<small><sub>2</sub></small> with a selected set of 28 carbanions through DFT calculations and provide linear free-energy relationships that correlate the Δ<em>G</em><small><sup>0</sup></small> and the Δ<em>G</em><small><sup>‡</sup></small> of the carboxylation step. These reveal a Leffler–Hammond parameter <em>α</em> = 0.26 ± 0.02 and an intrinsic barrier Δ<em>G</em><small><sup>‡</sup></small><small><sub>0</sub></small> = 12.7 ± 0.3 kcal mol<small><sup>−1</sup></small> (ωb97XD/aug-cc-pvtz//ωb97XD/def2tzvp level of theory), indicative of smooth reactivity of carbanions with CO<small><sub>2</sub></small>. This reactivity is further associated with the basicity of the carbanions (expressed as the p<em>K</em><small><sub>aH</sub></small> of the conjugate acid), in a linear Brønsted plot between calculated Δ<em>G</em><small><sup>‡</sup></small> and experimental p<em>K</em><small><sub>aH</sub></small> (slope <em>β</em> = 0.40 ± 0.04 kcal mol<small><sup>−1</sup></small>). According to the Mayr–Patz equation, calculations allow the extrapolation of electrophilicity values for CO<small><sub>2</sub></small> in the range from −15.3 to −18.7, in good agreement with a single reported experimental value of −16.3. Concerning the structural changes occurring in the transition state, the major energy penalty comes from the distortion of CO<small><sub>2</sub></small>. These findings can be useful in designing novel reactivity targeting carbon dioxide fixation.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 21","pages":" 5050-5057"},"PeriodicalIF":5.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/se/d4se01065e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmentally friendly and innovative design of ZIF-67 and lignin modified composites for efficient catalytic transfer hydrodeoxygenation of lignin-related phenols† 以环保和创新的方式设计 ZIF-67 和木质素改性复合材料,用于木质素相关酚类的高效催化转移加氢脱氧†。
IF 5 3区 材料科学
Sustainable Energy & Fuels Pub Date : 2024-09-24 DOI: 10.1039/D4SE01220H
Mengqing Zhou, Changzhou Chen, Jie Jiang, Yajun Liu and Jianchun Jiang
{"title":"Environmentally friendly and innovative design of ZIF-67 and lignin modified composites for efficient catalytic transfer hydrodeoxygenation of lignin-related phenols†","authors":"Mengqing Zhou, Changzhou Chen, Jie Jiang, Yajun Liu and Jianchun Jiang","doi":"10.1039/D4SE01220H","DOIUrl":"https://doi.org/10.1039/D4SE01220H","url":null,"abstract":"<p >Exploring lignin depolymerization and modification can yield high-value chemicals and liquid fuels, thereby enhancing resource utilization efficiency and alleviating pressure caused by energy shortages. In this paper, lignin-based carbon materials (Co-ZIF@KL-1 and Co-ZIF@KL-2) loaded with a metal–organic framework (ZIF-67) on kraft lignin biochar (KL) were prepared using two different methods (<em>In situ</em> method and traditional immersion method). In addition, catalysts with Co metal loaded on KL biochar (Co@KL) and ZIF-67 catalyst were also prepared for comparison with the above two different Co-ZIF@KL-1 and Co-ZIF@KL-2 catalysts. These catalysts were all applied to the hydrodeoxygenation (HDO) of guaiacol. Among them, the Co-ZIF@KL-1 catalyst exhibited the highest catalytic activity with 94.53% conversion of guaiacol and 83.86% selectivity of cyclohexanol under the optimal reaction conditions of 240 °C, 2.0 MPa N<small><sub>2</sub></small>, and 4 h. The superior catalytic performance can be attributed to its high surface area, strong stability, and appropriate acidic sites. Based on the distribution of catalytic products, pathways for the guaiacol HDO reaction are hypothesized. In general, ZIF materials and lignin composites offer substantial value for advancing biomass catalytic conversion in the future.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 21","pages":" 5001-5012"},"PeriodicalIF":5.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high-loading catalyst of highly dispersed nickel species on acid-treated mesoporous clay layers for efficient CO and CO2 methanation† 酸处理介孔粘土层上高度分散镍物种的高负载催化剂,用于高效 CO 和 CO2 甲烷化†。
IF 5 3区 材料科学
Sustainable Energy & Fuels Pub Date : 2024-09-24 DOI: 10.1039/D4SE01179A
Feifei Li, Junbo Zhang, Yufu Liu, Guanjun Gao, Yi He and Xuzhuang Yang
{"title":"A high-loading catalyst of highly dispersed nickel species on acid-treated mesoporous clay layers for efficient CO and CO2 methanation†","authors":"Feifei Li, Junbo Zhang, Yufu Liu, Guanjun Gao, Yi He and Xuzhuang Yang","doi":"10.1039/D4SE01179A","DOIUrl":"https://doi.org/10.1039/D4SE01179A","url":null,"abstract":"<p >The catalytic performance of a nickel catalyst in the methanation reaction is strongly influenced by the nickel loading in the catalyst. However, a high nickel content in the catalyst can result in significant nickel agglomeration and sintering, leading to reduction in the number of the active sites available for the methanation reaction, ultimately resulting in poor catalytic performance. Herein, an efficient nickel catalyst with up to 20 wt% of highly dispersed nickel species was successfully synthesized by a straightforward wet chemical method. The optimal composition of the catalyst was selected by using an orthogonal experimental scheme and range analysis method. During the preparation process, acid-treated clay was used as the support, and amino acids were employed as ligands for nickel ions. The amino groups in amino acids can coordinate with the nickel ions, forming nickel-amino acid framework nanocrystals on the clay layers and thus obtaining a catalyst with a high content of highly dispersed nickel species on the clay layers. The catalyst demonstrated an impressive single pass CO conversion of nearly 100% and a methane selectivity exceeding 82% in the CO methanation reaction, and it exhibited a single pass CO<small><sub>2</sub></small> conversion surpassing 91% and a remarkable 100% methane selectivity in the CO<small><sub>2</sub></small> methanation process. Furthermore, the catalyst showcased excellent stability throughout both reactions, further highlighting its potential for practical applications. This study offers a promising approach for the synthesis of efficient nickel catalysts with high nickel contents of highly dispersed active sites.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 21","pages":" 4945-4955"},"PeriodicalIF":5.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fast-response adaptive hierarchical mode triboelectric nanogenerator for random gust energy harvesting† 用于随机阵风能量收集的快速响应自适应分层模式三电纳米发电机†。
IF 5 3区 材料科学
Sustainable Energy & Fuels Pub Date : 2024-09-23 DOI: 10.1039/D4SE00869C
Shujing Sha, Mingjian Qin, Xin Yu, Zhibo Xu and Xiaohui Lu
{"title":"A fast-response adaptive hierarchical mode triboelectric nanogenerator for random gust energy harvesting†","authors":"Shujing Sha, Mingjian Qin, Xin Yu, Zhibo Xu and Xiaohui Lu","doi":"10.1039/D4SE00869C","DOIUrl":"https://doi.org/10.1039/D4SE00869C","url":null,"abstract":"<p >As a clean energy harvesting technology, triboelectric nanogenerators (TENGs) are becoming increasingly crucial in natural energy harvesting. However, due to the characteristics of natural wind, including randomness and broad wind speed ranges, efficient harvesting of wind energy has become a significant obstacle to developing wind energy TENGs. For this purpose, a fast-response triboelectric nanogenerator (FR-TENG). for gust energy capture is proposed in this paper. It contains a multilayer structure with four rotors; the slider mass is different on each layer of the mechanical switch to achieve graded harvesting of wind energy. Experiments proved that by grading settings, the efficiency of harvesting wind energy of the FR-TENG dramatically improves, and the output electrical signal of the FR-TENG can also be significantly enhanced. In the process of charging a 13 μF capacitor at 11.9 m s<small><sup>−1</sup></small> wind speed, the charging speed of the FR-TENG is approximately 2.25 times that of the Stepless Wind Energy Triboelectric Nanogenerator (S-TENG). When the wind speed is about 9 m s<small><sup>−1</sup></small>, the FR-TENG can light up 640 light-emitting diodes (LEDs) and typically supply power for a thermometer. In addition, after durability testing, the performance of the FRTENG can be maintained at approximately 97%. Therefore, this paper provides a valuable method for collecting efficient and stable wind energy.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 20","pages":" 4783-4789"},"PeriodicalIF":5.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxygen enriched porous carbon nanoflakes enable high-performance zinc ion hybrid capacitors† 富氧多孔纳米碳片实现了高性能锌离子混合电容器†。
IF 5 3区 材料科学
Sustainable Energy & Fuels Pub Date : 2024-09-23 DOI: 10.1039/D4SE00992D
Taiyu Cao, Chunliu Zhu, Xinyu Wang, Zhaowei Ji, Huanyu Liang, Jing Shi, Weiqian Tian, Jingwei Chen, Jingyi Wu and Huanlei Wang
{"title":"Oxygen enriched porous carbon nanoflakes enable high-performance zinc ion hybrid capacitors†","authors":"Taiyu Cao, Chunliu Zhu, Xinyu Wang, Zhaowei Ji, Huanyu Liang, Jing Shi, Weiqian Tian, Jingwei Chen, Jingyi Wu and Huanlei Wang","doi":"10.1039/D4SE00992D","DOIUrl":"https://doi.org/10.1039/D4SE00992D","url":null,"abstract":"<p >Zinc ion hybrid capacitors (ZIHCs) are expected to be one of the most promising energy storage devices due to their affordability, high level of safety, durability and exceptional electrochemical performance. However, the widespread applications of ZIHCs are often hindered by the low specific capacity and energy density of cathode materials. Faced with these challenges, we employed a template strategy to construct oxygen-doped porous carbon nanoflake (PCN) cathode materials with abundant defective sites as a potential candidate for the cathode material of ZIHCs. PCNs possess a substantial specific surface area of 1134 m<small><sup>2</sup></small> g<small><sup>−1</sup></small> with a hierarchical porous structure, and a high oxygen doping level of 19.0 at%, offering abundant active sites to enhance the storage capacity of PCN-based ZIHCs. Consequently, ZIHCs assembled from PCNs exhibit an extraordinary specific capacity of 179.3 mA h g<small><sup>−1</sup></small> at 0.1 A g<small><sup>−1</sup></small>, excellent cycling stability with no obvious capacity decay over 5000 cycles even at 10 A g<small><sup>−1</sup></small>, and an outstanding energy density of 116.7 W h kg<small><sup>−1</sup></small>. Additionally, <em>ex situ</em> experiments were conducted to study the dynamic behaviors (adsorption/desorption) between zinc ions and anions of PCN-based electrodes during the charge and discharge process. This work highlights the importance of introducing rich oxygen-containing functional groups to carbon electrodes for constructing ZIHCs with outstanding performance.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 20","pages":" 4790-4798"},"PeriodicalIF":5.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of mask oil using a biogas-fired reactor with a fly ash catalyst and its assessment in a diesel engine 使用带有粉煤灰催化剂的沼气燃烧反应器生产掩模油及其在柴油发动机中的应用评估
IF 5 3区 材料科学
Sustainable Energy & Fuels Pub Date : 2024-09-23 DOI: 10.1039/D4SE00664J
D. RajaKullayappa, G. Karthikeyan, P. Premkumar, V. Elangkathir and C. G. Saravanan
{"title":"Production of mask oil using a biogas-fired reactor with a fly ash catalyst and its assessment in a diesel engine","authors":"D. RajaKullayappa, G. Karthikeyan, P. Premkumar, V. Elangkathir and C. G. Saravanan","doi":"10.1039/D4SE00664J","DOIUrl":"https://doi.org/10.1039/D4SE00664J","url":null,"abstract":"<p >During the COVID-19 pandemic, disposable masks were widely used, which raised substantial environmental concerns due to their improper disposal and plastic pollution. The masks, primarily made from polypropylene, represent not only an environmental degradation problem, but also an opportunity for energy recovery. In an innovative approach, these used masks were converted into ‘mask oil,’ which can be used as an alternative fuel for diesel engines, providing a sustainable solution to waste management and energy conservation. The mask oil, derived from the degradation of used masks, exhibits properties that make it a viable alternative to conventional diesel fuel. Its low density and kinematic viscosity enable it to atomize and vaporize more rapidly, which results in a greater efficiency of combustion. A lower flash point reduces ignition delay and accelerates combustion initiation, while a higher fire point ensures sustained combustion. According to GC-MS analysis, the mask oil contains a mixture of hydrocarbons and oxygenated compounds that enhance its lubricity and burning properties. FTIR analysis revealed functional groups such as alkenes and alcohols that enhance the reactivity and combustion efficiency of the oil. A test on a Kirloskar TV1 diesel engine demonstrated superior heat release rates and cylinder pressures in comparison to diesel, as well as lower unburned hydrocarbon emissions.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 21","pages":" 5013-5030"},"PeriodicalIF":5.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信