Climate of The Past最新文献

筛选
英文 中文
Controls on Early Cretaceous South Atlantic Ocean circulation and carbon burial – a climate model–proxy synthesis 对早白垩世南大西洋环流和碳埋藏的控制--气候模型--代用指标综述
IF 4.3 2区 地球科学
Climate of The Past Pub Date : 2024-07-23 DOI: 10.5194/cp-20-1537-2024
Sebastian Steinig, Wolf Dummann, Peter Hofmann, Martin Frank, Wonsun Park, Thomas Wagner, Sascha Flögel
{"title":"Controls on Early Cretaceous South Atlantic Ocean circulation and carbon burial – a climate model–proxy synthesis","authors":"Sebastian Steinig, Wolf Dummann, Peter Hofmann, Martin Frank, Wonsun Park, Thomas Wagner, Sascha Flögel","doi":"10.5194/cp-20-1537-2024","DOIUrl":"https://doi.org/10.5194/cp-20-1537-2024","url":null,"abstract":"Abstract. Black shale sediments from the Barremian to Aptian South Atlantic document the intense and widespread burial of marine organic carbon during the initial stages of seafloor spreading between Africa and South America. The enhanced sequestration of atmospheric CO2 makes these young ocean basins potential drivers of the Early Cretaceous carbon cycle and climate perturbations. The opening of marine gateways between initially restricted basins and related circulation and ventilation changes are a commonly invoked explanation for the transient formation and disappearance of these regional carbon sinks. However, large uncertainties in palaeogeographic reconstructions limit the interpretation of available palaeoceanographic data and prevent any robust model-based quantifications of the proposed circulation and carbon burial changes. Here, we present a new approach to assess the principal controls on the Early Cretaceous South Atlantic and Southern Ocean circulation changes under full consideration of the uncertainties in available boundary conditions. Specifically, we use a large ensemble of 36 climate model experiments to simulate the Barremian to Albian progressive opening of the Falkland Plateau and Georgia Basin gateways with different configurations of the proto-Drake Passage, the Walvis Ridge, and atmospheric CO2 concentrations. The experiments are designed to complement available geochemical data across the regions and to test circulation scenarios derived from them. All simulations show increased evaporation and intermediate water formation at subtropical latitudes that drive a meridional overturning circulation whose vertical extent is determined by the sill depth of the Falkland Plateau. The densest water masses formed in the southern Angola Basin and potentially reached the deep Cape Basin as Walvis Ridge Overflow Water. Palaeogeographic uncertainties are as important as the lack of precise knowledge of atmospheric CO2 levels for the simulated temperature and salinity spread in large parts of the South Atlantic. Overall temperature uncertainties reach up to 15 °C and increase significantly with water depth. The ensemble approach reveals temporal changes in the relative importance of geographic and radiative forcings for the simulated oceanographic conditions and, importantly, nonlinear interactions between them. The progressive northward opening of the highly restricted Angola Basin increased the sensitivity of local overturning and upper-ocean stratification to atmospheric CO2 concentrations due to large-scale changes in the hydrological cycle, while the chosen proto-Drake Passage depth is critical for the ocean dynamics and CO2 response in the southern South Atlantic. Finally, the simulated processes are integrated into a recent carbon burial framework to document the principal control of the regional gateway evolution on the progressive shift from the prevailing saline and oxygen-depleted subtropical water masses to the dominance o","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"27 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate and ice sheet dynamics in Patagonia throughout marine isotope stages 2 and 3 巴塔哥尼亚整个海洋同位素阶段 2 和 3 的气候和冰盖动态
IF 4.3 2区 地球科学
Climate of The Past Pub Date : 2024-07-23 DOI: 10.5194/cp-20-1559-2024
Andrés Castillo-Llarena, Franco Retamal-Ramírez, Jorge Bernales, Martín Jacques-Coper, Matthias Prange, Irina Rogozhina
{"title":"Climate and ice sheet dynamics in Patagonia throughout marine isotope stages 2 and 3","authors":"Andrés Castillo-Llarena, Franco Retamal-Ramírez, Jorge Bernales, Martín Jacques-Coper, Matthias Prange, Irina Rogozhina","doi":"10.5194/cp-20-1559-2024","DOIUrl":"https://doi.org/10.5194/cp-20-1559-2024","url":null,"abstract":"Abstract. During the Last Glacial Maximum (LGM, ∼ 23 000 to 19 000 years ago), the Patagonian Ice Sheet (PIS) covered the central chain of the Andes between ∼ 38 to 55° S. Existing paleoclimate evidence – mostly derived from glacial landforms – suggests that maximum ice sheet expansions in the Southern Hemisphere and Northern Hemisphere were not synchronized. However, large uncertainties still exist in the timing of the onset of regional deglaciation and its major drivers. Here we present an ensemble of numerical simulations of the PIS during the LGM. We assess the skill of paleoclimate model products in reproducing the range of atmospheric conditions needed to enable an ice sheet growth in concordance with geomorphological and geochronological evidence. The resulting best-fit climate product is then combined with records from southern South America offshore sediment cores and Antarctic ice cores to drive transient simulations throughout the last 70 ka using a glacial index approach. Our analysis suggests a strong dependence of the PIS geometry on near-surface air temperature forcing. Most ensemble members underestimate the ice cover in the northern part of Patagonia, while tending to expand beyond its constrained eastern boundaries. We largely attribute these discrepancies between the model-based ice geometries and geological evidence to the low resolution of paleoclimate models and their prescribed ice mask. In the southernmost sector, evidence suggests full glacial conditions during marine isotope stage 3 (MIS3, ∼ 59 400 to 27 800 years ago), followed by a warming trend towards MIS2 (∼ 27 800 to 14 700 years ago). However, in northern Patagonia, this deglacial trend is absent, indicating a relatively consistent signal throughout MIS3 and MIS2. Notably, Antarctic cores do not reflect a glacial history consistent with the geochronological observations. Therefore, investigations of the glacial history of the PIS should take into account southern midlatitude records to capture effectively its past climatic variability.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"15 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subaqueous speleothems as archives of groundwater recharge on Australia’s southern arid margin 作为澳大利亚南部干旱边缘地区地下水补给档案的水下洞穴岩层
IF 4.3 2区 地球科学
Climate of The Past Pub Date : 2024-07-22 DOI: 10.5194/egusphere-2024-1959
Calla N. Gould-Whaley, Russell N. Drysdale, Pauline C. Treble, Jan-Hendrik May, Stacey C. Priestley, John C. Hellstrom, Clare Buswell
{"title":"Subaqueous speleothems as archives of groundwater recharge on Australia’s southern arid margin","authors":"Calla N. Gould-Whaley, Russell N. Drysdale, Pauline C. Treble, Jan-Hendrik May, Stacey C. Priestley, John C. Hellstrom, Clare Buswell","doi":"10.5194/egusphere-2024-1959","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1959","url":null,"abstract":"<strong>Abstract.</strong> As anthropogenic climate change enhances aridity across vast regions of the globe, understanding drivers of aridification is more important than ever before. Unfortunately, arid regions globally tend to exhibit a paucity of palaeoclimate records, and the archives that are available typically comprise unconsolidated sediments prone to reworking, large dating uncertainties, and ambiguous climatic interpretations. This is certainly true of Australia’s vast continental interior, which is dominated by harsh, arid conditions. Mairs Cave, in the southern Ikara-Flinders Ranges (South Australia), is located on the southern margin of the arid zone. In the present day the cave is largely dry and there is limited evidence of active speleothem growth. However, historical records and observations throughout the cave indicate that it has been periodically flooded, suggesting the local water balance was once much more positive than it is today. The cave contains a curtain of hanging speleothems known as pendulites, which grow subaqueously when submerged in water that is saturated with respect to calcite. Geochemical evidence, including trace element concentrations, uranium isotope ratios, and Dead Carbon Fractions, all indicate that rising of the local groundwater during periods of enhanced groundwater recharge is the cause of the cave flooding events that trigger pendulite growth. Uranium-thorium dating of a pendulite retrieved from Mairs Cave has revealed two multi-millennial growth phases (68.5 to 65.4 kyr and 51.2 to 42.3 kyr) and two short bursts of growth (18.9 kyr and 16.4 kyr) during the Last Glacial Period. The absence of subsequent pendulite growth suggests that strong water deficits under warm Holocene interglacial conditions give rise to episodic, rather than persistent, cave flooding.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"215 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconstructing Younger Dryas ground temperature and snow thickness from cave deposits 从洞穴沉积物中重建年轻旱期的地表温度和积雪厚度
IF 4.3 2区 地球科学
Climate of The Past Pub Date : 2024-07-22 DOI: 10.5194/cp-20-1521-2024
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, Gina E. Moseley
{"title":"Reconstructing Younger Dryas ground temperature and snow thickness from cave deposits","authors":"Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, Gina E. Moseley","doi":"10.5194/cp-20-1521-2024","DOIUrl":"https://doi.org/10.5194/cp-20-1521-2024","url":null,"abstract":"Abstract. The Younger Dryas stadial was characterised by a rapid shift towards cold-climate conditions in the North Atlantic realm during the last deglaciation. While some climate parameters including atmospheric temperature and glacier extent are widely studied, empirical constraints on permafrost temperature and snow thickness are limited. To address this, we present a regional dataset of cryogenic cave carbonates (CCCs) from three caves in Great Britain that formed at temperatures between −2 and 0 °C. Our CCC record indicates that these permafrost temperatures persisted for most of the Younger Dryas. By combining ground temperatures with surface temperatures from high-resolution ground-truthed model simulations, we demonstrate that ground temperatures were approximately 6.6 ± 2.3 °C warmer than the mean annual air temperature. Our results suggest that the observed temperature offset between permafrost and the atmosphere can be explained by an average snow thickness between 0.2 and 0.9 m, which persisted for 233 ± 54 d per year. By identifying modern analogues from climate reanalysis data, we demonstrate that the inferred temperature and snow cover characteristics for the British Isles during the Younger Dryas are best explained by extreme temperature seasonality, comparable to continental parts of today's Arctic Archipelago. Such a climate for the British Isles necessitates a winter sea ice margin at approximately 45° N in the North Atlantic Ocean.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"38 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the surface mass balance of the Laurentide Ice Sheet during the last deglaciation 调查最后一次冰期劳伦泰德冰原的地表质量平衡
IF 4.3 2区 地球科学
Climate of The Past Pub Date : 2024-07-22 DOI: 10.5194/egusphere-2024-1998
Kirstin Koepnick, Minmin Fu, Eli Tziperman
{"title":"Investigating the surface mass balance of the Laurentide Ice Sheet during the last deglaciation","authors":"Kirstin Koepnick, Minmin Fu, Eli Tziperman","doi":"10.5194/egusphere-2024-1998","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1998","url":null,"abstract":"<strong>Abstract.</strong> In spite of decades of research, the role of climate feedbacks in the Pleistocene glacial cycles is still not fully understood. Here, we calculate the surface mass balance (SMB) of the Laurentide Ice Sheet (LIS) throughout the last deglaciation using the isotope-enabled transient climate model experiment (iTraCE). A surface energy balance framework is used to calculate yearly melt, and a parameterization of the refreezing of snow melt and liquid precipitation is incorporated. The SMB calculated from iTraCE overestimates the total ice mass loss rate in comparison to the ICE-6G reconstruction from the Last Glacial Maximum (LGM; 21 ka) until about 15–14 ka; subsequently, the fully forced climate model experiment better fits the ICE-6G ice volume loss rate. We find the melt rate for the LIS to be primarily set by the small residual of large net shortwave and longwave radiative fluxes. The melt, and hence the SMB, are very sensitive to small changes in the albedo and downwelling longwave radiation. By increasing albedo by a mere 1.9 % or by decreasing downwelling longwave radiation by only 1.45 % (well within the uncertainty range of these variables), the large overestimation of the rate of mass loss deduced from the SMB compared to reconstructed rates of mass loss from 19–15 ka can be eliminated. The inconsistency of the climate model-derived, offline SMB calculation and the ice mass reconstructions exists irrespective of the role of ablation caused by ice flow, which cannot be calculated using this analysis. The extreme sensitivity of the melt rate suggests that General Circulation Models (GCMs) still struggle to reliably calculate the SMB, presenting a significant roadblock in our attempt to understand the Pleistocene ice ages.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"161 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the 1966 Camp Century Sub-Glacial Core: A Multiscale Analysis 1966 年坎普世纪冰川下岩心的特征:多尺度分析
IF 4.3 2区 地球科学
Climate of The Past Pub Date : 2024-07-18 DOI: 10.5194/egusphere-2024-2194
Catherine M. Collins, Nicolas Perdrial, Pierre-Henri Blard, Nynke Keulen, William C. Mahaney, Halley Mastro, Juliana Souza, Donna M. Rizzo, Yves Marrocchi, Paul C. Knutz, Paul R. Bierman
{"title":"Characterization of the 1966 Camp Century Sub-Glacial Core: A Multiscale Analysis","authors":"Catherine M. Collins, Nicolas Perdrial, Pierre-Henri Blard, Nynke Keulen, William C. Mahaney, Halley Mastro, Juliana Souza, Donna M. Rizzo, Yves Marrocchi, Paul C. Knutz, Paul R. Bierman","doi":"10.5194/egusphere-2024-2194","DOIUrl":"https://doi.org/10.5194/egusphere-2024-2194","url":null,"abstract":"<strong>Abstract.</strong> In 1966, drilling at Camp Century, Greenland, recovered 3.44 meters of sub-glacial material from beneath 1350 meters of ice. Although prior analysis of this material showed that the core includes glacial sediment, ice, and sediment deposited during an interglacial, the sub-glacial material had never been thoroughly studied. To better characterize this material, we analyzed 26 of the 30 core samples remaining in the archive. We performed a multi-scale analysis including X-ray diffraction, micro-computed tomography, and scanning electron microscopy to delineate stratigraphic units and assign facies based on inferred depositional processes. At the macro-scale, quantitative X-ray diffraction revealed that quartz and feldspar dominated the sediment and that there was insignificant variation in relative mineral abundance between samples. Meso-scale evaluation of the frozen material using micro-computed tomography scans showed clear variations in the stratigraphy of the core characterized by the presence of bedding, grading, and sorting. Micro-scale grain size and shape analysis, conducted using scanning electron microscopy, showed an abundance of fine-grained materials in the lower part of the core and no correspondence between grain shape parameters and sedimentary structures. These multiscale data define 5 distinct stratigraphic units within the core based on sedimentary process; K-means clustering analysis supports this proposed unit delineation. Our observations suggest that ice retreat uncovered the Camp Century region exposing basal till, covered with a remnant of basal ice or firn (Units 1 and 2). Continued ice-free conditions led to till disruption by liquid water causing a slump deposit (Unit 3) and the development of a small fluvial system of increasing energy up core (Units 4–5). Analysis of the Camp Century sub-glacial material indicates a diverse stratigraphy preserved below the ice that recorded episodes of glaciated and deglaciated conditions in northwestern Greenland. Our physical, geochemical, and mineralogic analyses reveal a history of deposition, weathering, and sediment transport preserved under the ice and show the promise of sub-glacial materials to increase our knowledge of past ice sheet behavior over time.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"63 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New evidence for millennial-scale interactions between Hg cycling and hydroclimate from Lake Bosumtwi, Ghana 来自加纳 Bosumtwi 湖的千年尺度汞循环与水文气候相互作用的新证据
IF 4.3 2区 地球科学
Climate of The Past Pub Date : 2024-07-18 DOI: 10.5194/egusphere-2024-2123
Alice Paine, Joost Frieling, Timothy Shanahan, Tamsin Mather, Nicholas McKay, Stuart Robinson, David Pyle, Isabel Fendley, Ruth Kiely, William Gosling
{"title":"New evidence for millennial-scale interactions between Hg cycling and hydroclimate from Lake Bosumtwi, Ghana","authors":"Alice Paine, Joost Frieling, Timothy Shanahan, Tamsin Mather, Nicholas McKay, Stuart Robinson, David Pyle, Isabel Fendley, Ruth Kiely, William Gosling","doi":"10.5194/egusphere-2024-2123","DOIUrl":"https://doi.org/10.5194/egusphere-2024-2123","url":null,"abstract":"<strong>Abstract.</strong> Changing hydrology impacts the biogeochemical cycling of elements such as mercury (Hg), whose transport and transformation in the environment appear linked to hydroclimate on diverse timescales. Key questions remain about how these processes manifest over different timescales and their potential environmental consequences. For example, millennial-scale Hg-hydroclimate interactions in the terrestrial realm are poorly understood, as few sedimentary records have sufficient length and/or resolution to record abrupt and long-lasting changes in Hg cycling, and the relative roles of depositional processes on these changes. Here, we present a high-resolution sedimentary Hg record from tropical Lake Bosumtwi (Ghana, West Africa) since ~96 ka. A coupled response is observed between Hg flux and shifts in sediment composition, the latter reflecting changes in lake level. Specifically, we find that the amplitude and frequency of Hg peaks increase as the lake level rises, suggesting that Hg burial was enhanced in response to an insolation-driven increase in precipitation at ~73 ka. A more transient, threefold increase in Hg concentration and accumulation rate is also recorded between ~13 and 4 ka, coinciding with a period of distinctly higher rainfall across North Africa known as the African Humid Period. Two mechanisms, likely working in tandem, could explain this correspondence: (1) an increase in wet deposition of Hg by precipitation and (2) efficient sequestration of organic-hosted Hg. Taken together, our results reaffirm that changes in hydroclimate, directly and/or indirectly, can be linked to millennial-scale changes in tropical Hg cycling, and that these signals can be recorded in lake sediments.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"16 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Possible provenance of IRD by tracing late Eocene Antarctic iceberg melting using a high-resolution ocean model 利用高分辨率海洋模型追踪晚始新世南极冰山融化情况,探寻 IRD 的可能出处
IF 4.3 2区 地球科学
Climate of The Past Pub Date : 2024-07-18 DOI: 10.5194/egusphere-2024-1596
Mark Vinz Elbertsen, Erik van Sebille, Peter Kristian Bijl
{"title":"Possible provenance of IRD by tracing late Eocene Antarctic iceberg melting using a high-resolution ocean model","authors":"Mark Vinz Elbertsen, Erik van Sebille, Peter Kristian Bijl","doi":"10.5194/egusphere-2024-1596","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1596","url":null,"abstract":"<strong>Abstract.</strong> The Eocene-Oligocene Transition is characterised by the inception of the large-scale Antarctic ice sheet. However, evidence of earlier glaciation during the Eocene has been found, including the presence of ice-rafted debris at Ocean Drilling Program Leg 113 Site 696 on the South Orkney Microcontinent (Carter et al., 2017). This suggests marine-terminating glaciers should have been present in the southern Weddell Sea region during the late Eocene, generating sufficiently large icebergs to South Orkney to survive the high Eocene ocean temperatures. Here, we use Lagrangian iceberg tracing in a high-resolution eddy-resolving ocean model of the late Eocene (Nooteboom et al., 2022) to show that icebergs released from offshore the present-day Filchner Ice Shelf region and Dronning Maud Land could reach the South Orkney Microcontinent during the late Eocene. The high melt rates under the Eocene warm climate require a minimum initial iceberg mass on the order of 100 Mt and an iceberg thickness of several tens of metres to be able to reach the South Orkney Microcontinent. Although these sizes are at the larger end of the present-day range of common iceberg sizes around Antarctica, the minimum estimates are not unfeasible and, hence, the present study confirms previous findings suggesting glaciation and iceberg calving were possible in the late Eocene.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"46 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Middle Miocene climate evolution in the Northern Mediterranean region (Digne-Valensole basin, SE France) 北地中海地区中新世气候演变(法国东南部迪涅-瓦伦索莱盆地)
IF 4.3 2区 地球科学
Climate of The Past Pub Date : 2024-07-16 DOI: 10.5194/egusphere-2024-2093
Armelle Ballian, Maud J. M. Meijers, Isabelle Cojan, Damien Huyghe, Miguel Bernecker, Katharina Methner, Mattia Tagliavento, Jens Fiebig, Andreas Mulch
{"title":"Middle Miocene climate evolution in the Northern Mediterranean region (Digne-Valensole basin, SE France)","authors":"Armelle Ballian, Maud J. M. Meijers, Isabelle Cojan, Damien Huyghe, Miguel Bernecker, Katharina Methner, Mattia Tagliavento, Jens Fiebig, Andreas Mulch","doi":"10.5194/egusphere-2024-2093","DOIUrl":"https://doi.org/10.5194/egusphere-2024-2093","url":null,"abstract":"<strong>Abstract.</strong> During the Middle Miocene, the Earth shifted from a warm state, the Miocene Climatic Optimum (MCO, 16.9–14.7 Ma), to a colder state associated with the formation of extensive and permanent ice sheets on Antarctica. This climatic shift, the Middle Miocene Climatic Transition (MMCT, 14.7–13.8 Ma) strongly affected the composition and structure of major biomes, ocean circulation, as well as precipitation patterns. Although Middle Miocene climate dynamics are well documented in marine records, our knowledge of terrestrial climate change is not well constrained. Here we present a long-term (23–13 Ma) stable (𝛿<sup>13</sup>C, 𝛿<sup>18</sup>O) and clumped (∆<sub>47</sub>) isotope record of soil carbonates from a northern Mediterranean Alpine foreland basin (Digne-Valensole Basin, France). ∆<sub>47</sub>-derived soil carbonate formation temperatures indicate a highly dynamic dry season temperature pattern that is consistent with multiple periods of reorganization of atmospheric circulation during the MCO. We propose that changes in atmospheric circulation patterns modified the seasonality of precipitation and, ultimately, the timing of pedogenic carbonate formation. Consequently, ∆<sub>47</sub> soil carbonate temperature data record the combined effects of long-term regional temperature and carbonate formation seasonality change. The data are consistent with the existence of a proto-Mediterranean climate already during certain MCO time intervals. Following the MMCT, the stable and clumped isotope record displays pronounced cooling after 13.8 Ma accompanied by a rather large (-5.0 %) decrease in soil water 𝛿<sup>18</sup>O values. Our northern Mediterranean foreland basin climate record shares strong similarities with time-equivalent records from the terrestrial European mid-latitudes and the global oceans and enhances our understanding of the circum-Alpine Middle Miocene terrestrial climate dynamics.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"7 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pollen-based climatic reconstructions for the interglacial analogues of MIS 1 (MIS 19, 11 and 5) in the Southwestern Mediterranean: insights from ODP Site 976 以花粉为基础重建地中海西南部 MIS 1(MIS 19、11 和 5)冰期类似物的气候:从 ODP 976 号站点获得的启示
IF 4.3 2区 地球科学
Climate of The Past Pub Date : 2024-07-15 DOI: 10.5194/egusphere-2024-1771
Dael Sassoon, Nathalie Combourieu-Nebout, Odile Peyron, Adele Bertini, Francesco Toti, Vincent Lebreton, Marie-Hélène Moncel
{"title":"Pollen-based climatic reconstructions for the interglacial analogues of MIS 1 (MIS 19, 11 and 5) in the Southwestern Mediterranean: insights from ODP Site 976","authors":"Dael Sassoon, Nathalie Combourieu-Nebout, Odile Peyron, Adele Bertini, Francesco Toti, Vincent Lebreton, Marie-Hélène Moncel","doi":"10.5194/egusphere-2024-1771","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1771","url":null,"abstract":"<strong>Abstract.</strong> Pleistocene interglacials, specifically MIS 19, 11 and 5, have been suggested as analogues of MIS 1 due to similar solar forcing patterns, greenhouse gas concentrations and sea levels. There has been substantial debate regarding which of these is the most suitable analogue and so far there has been no consensus, although what really emerges from recent work is the high variation in regional climate during these periods. One of the limiting factors in our understanding of these potential analogues is the fact that very few long-sequences cover the entire duration of these interglacials at high resolution. In this study, a multi-method approach is used to produce climatic reconstructions for MIS 19, 11, 5 and 1, using pollen data derived from a single long marine core from ODP Site 976. This represents the first study which attempts to use pollen-based climatic reconstructions to compare MIS 1 with its analogues, representing a necessary contribution to the debate with a focus on the relationships between vegetation and climate in the southwestern Mediterranean. Three methods of quantitative climate reconstruction have been adopted: the more widely used methods Modern Analogues Technique (MAT) and Weighted Average Partial Least Squares regression (WA-PLS), and a more recent machine-learning method known as Boosted Regression Trees (BRT). The reconstructions show consistent changes in temperature and precipitation during MIS 19, 11, 5 and 1, which correlate well with climatic changes observed in other regional and global proxies, and highlight distinct climatic characteristics of each interglacial period in the southwestern Mediterranean. MIS 19 exhibits high variability and colder temperatures compared to subsequent interglacials and the MIS 1. Conversely, MIS 11 displays warmer temperatures and greater stability, which makes it a useful analogue to understand prolonged interglacials, crucial considering the anthropogenic impacts on the duration of warm climate during the Holocene. MIS 5 exhibits overall warmer conditions, and its higher temperature coupled with fluctuations in solar forcing makes it a less suitable MIS 1 analogue. Although past interglacials do not offer direct predictions for the Holocene's future, they provide essential insights into Earth's responses to various forcing factors, serving as crucial benchmarks for understanding the Mediterranean's sensitivity to global changes.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"36 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信