Chinese Optics Letters最新文献

筛选
英文 中文
Inverse design on terahertz multilevel diffractive lens based on 3D printing 基于3D打印的太赫兹多层衍射透镜逆设计
2区 物理与天体物理
Chinese Optics Letters Pub Date : 2023-01-01 DOI: 10.3788/col202321.110006
Chenyu Shi, Yu Wang, Qiongjun Liu, Sai Chen, Weipeng Zhao, Xiaojun Wu, Jierong Cheng, Shengjiang Chang
{"title":"Inverse design on terahertz multilevel diffractive lens based on 3D printing","authors":"Chenyu Shi, Yu Wang, Qiongjun Liu, Sai Chen, Weipeng Zhao, Xiaojun Wu, Jierong Cheng, Shengjiang Chang","doi":"10.3788/col202321.110006","DOIUrl":"https://doi.org/10.3788/col202321.110006","url":null,"abstract":"Terahertz (THz) lenses have numerous applications in imaging and communication systems. Currently, the common THz lenses are still based on the traditional design of a circular convex lens. In this work, we present a method for the design of a 3D-printed multilevel THz lens, taking advantage of the benefits offered by 3D printing technology, including compact size, lightweight construction, and cost-effectiveness. The approach utilizes an inverse design methodology, employing optimization methods to promise accurate performance. To reduce simulation time, we employ the finite-difference time-domain method in cylindrical coordinates for near-field computation and couple it with the Rayleigh–Sommerfeld diffraction theory to address far-field calculations. This technology holds great potential for various applications in the field of THz imaging, sensing, and communications, offering a novel approach to the design and development of functional devices operating in the THz frequency range.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135612376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated fluorescence excitation, collection, and filtering on a GaN waveguide chip 集成荧光激发,收集,并在GaN波导芯片滤波
2区 物理与天体物理
Chinese Optics Letters Pub Date : 2023-01-01 DOI: 10.3788/col202321.101203
Jiahui Zhang, Feng Xu, Ran An, Lin Wang, Min Jiang, Guanghui Wang, Yanqing Lu
{"title":"Integrated fluorescence excitation, collection, and filtering on a GaN waveguide chip","authors":"Jiahui Zhang, Feng Xu, Ran An, Lin Wang, Min Jiang, Guanghui Wang, Yanqing Lu","doi":"10.3788/col202321.101203","DOIUrl":"https://doi.org/10.3788/col202321.101203","url":null,"abstract":"Fluorescence detection is widely used in biology and medicine, while the realization of on-chip fluorescence detection is vital for the portable and point-of-care test (POCT) application. In this Letter, we propose an efficient fluorescence excitation and collection system using an integrated GaN chip consisting of a slot waveguide and a one-dimensional photonic crystal (1D PC) waveguide. The slot waveguide is used to confine the excitation light for intense light–sample interaction, and the one-trip collection efficiency at the end of slot waveguide is up to 14.65%. More interestingly, due to the introduction of the 1D PC waveguide, the fluorescence signal is directly filtered out, and the excitation light is reflected to the slot waveguide for multiple excitations. Its transmittances for the designed exciting wavelength of 520 nm and the fluorescent wavelength of 612 nm are 0.2% and 85.4%, respectively. Finally, based on numerical analysis, the total fluorescence collection efficiency in our system amounts to 15.93%. It is the first time, to our knowledge, that the concept of an all-in-one-chip fluorescence detection system has been proposed, which paves the way for on-chip fluorescence excitation and collection, and may find potential applications of miniaturized and portable devices for biomedical fluorescence detection.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"138 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136206809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paper-based amorphous Ga2O3 solar-blind photodetector with improved flexibility and stability 纸基非晶态Ga2O3太阳盲光电探测器,具有更好的灵活性和稳定性
2区 物理与天体物理
Chinese Optics Letters Pub Date : 2023-01-01 DOI: 10.3788/col202321.101601
Hanchi Xia, Tao Zhang, Yuehui Wang, Yaping Qi, Fan Zhang, Zhenping Wu, Yang Zhang
{"title":"Paper-based amorphous Ga2O3 solar-blind photodetector with improved flexibility and stability","authors":"Hanchi Xia, Tao Zhang, Yuehui Wang, Yaping Qi, Fan Zhang, Zhenping Wu, Yang Zhang","doi":"10.3788/col202321.101601","DOIUrl":"https://doi.org/10.3788/col202321.101601","url":null,"abstract":"Flexible devices provide advantages such as conformability, portability, and low cost. Paper-based electronics offers a number of advantages for many applications. It is lightweight, inexpensive, and biodegradable, making it an ideal choice for disposable electronics. In this work, we propose a novel configuration of photodetectors using paper as flexible substrates and amorphous Ga2O3 as the active materials, respectively. The photoresponse characteristics are investigated systematically. A decent responsivity yield and a specific detectivity of up to 66 mA/W and 3×1012 Jones were obtained at a low operating voltage of 10 V. The experiments also demonstrate that neither the twisting nor bending deformation can bring obvious performance degradation to the device. This work presents a candidate strategy for the application of conventional paper substrates to low-cost flexible solar-blind photodetectors, showing the potential of being integrated with other materials to create interactive flexible circuits.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136207199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of molecular alignment with deep learning-based M-XFROG technique 基于深度学习的M-XFROG技术的分子定位测量
2区 物理与天体物理
Chinese Optics Letters Pub Date : 2023-01-01 DOI: 10.3788/col202321.120021
Wanchen Tao, Siqi Sun, Lixin He, Yanqing He, Jianchang Hu, Yu Deng, Chengqing Xu, Pengfei Lan, Peixiang Lu
{"title":"Measurement of molecular alignment with deep learning-based M-XFROG technique","authors":"Wanchen Tao, Siqi Sun, Lixin He, Yanqing He, Jianchang Hu, Yu Deng, Chengqing Xu, Pengfei Lan, Peixiang Lu","doi":"10.3788/col202321.120021","DOIUrl":"https://doi.org/10.3788/col202321.120021","url":null,"abstract":"We demonstrate a deep-learning neural network (DNN) method for the measurement of molecular alignment by using the molecular-alignment-based cross-correlation polarization-gating frequency resolved optical gating (M-XFROG) technique. Our network has the capacity for direct measurement of molecular alignment from the FROG traces. In a proof-of-principle experiment, we have demonstrated our method in O2 molecules. With our method, the molecular alignment factor ⟨cos2 θ⟩(t) of O2, impulsively excited by a pump pulse, was directly reconstructed. The accuracy and validity of the reconstruction have been verified by comparison with the simulations based on experimental parameters.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136259385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cascaded metasurface for separated information encryption [Invited] 用于分离信息加密的级联元表面[特邀]
IF 3.5 2区 物理与天体物理
Chinese Optics Letters Pub Date : 2023-01-01 DOI: 10.3788/col202321.020003
Jiahao Wang, Guodong Zhu, Weiguo Zhang, Zhou Zhou, Zile Li, Guoxing Zheng
{"title":"Cascaded metasurface for separated information encryption [Invited]","authors":"Jiahao Wang, Guodong Zhu, Weiguo Zhang, Zhou Zhou, Zile Li, Guoxing Zheng","doi":"10.3788/col202321.020003","DOIUrl":"https://doi.org/10.3788/col202321.020003","url":null,"abstract":"","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"17 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74778668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Highly sensitive torsion sensor based on Mach–Zehnder interference in helical seven-core fiber taper 基于Mach-Zehnder干涉的螺旋七芯光纤锥度高灵敏度扭矩传感器
IF 3.5 2区 物理与天体物理
Chinese Optics Letters Pub Date : 2023-01-01 DOI: 10.3788/col202321.041205
Jiabin Wang, Xinzhe Zeng, Jian Zhou, Jiayu Hao, Xing-yu Yang, Yue Liu, Wenhuan Chen, Song Li, Yunxiang Yan, Tao Geng, Weimin Sun, Libo Yuan
{"title":"Highly sensitive torsion sensor based on Mach–Zehnder interference in helical seven-core fiber taper","authors":"Jiabin Wang, Xinzhe Zeng, Jian Zhou, Jiayu Hao, Xing-yu Yang, Yue Liu, Wenhuan Chen, Song Li, Yunxiang Yan, Tao Geng, Weimin Sun, Libo Yuan","doi":"10.3788/col202321.041205","DOIUrl":"https://doi.org/10.3788/col202321.041205","url":null,"abstract":"","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"365 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75446727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Experimental realization of strong coupling between a cold atomic ensemble and an optical fiber microcavity 冷原子系综与光纤微腔强耦合的实验实现
IF 3.5 2区 物理与天体物理
Chinese Optics Letters Pub Date : 2023-01-01 DOI: 10.3788/col202321.092702
Li Li, Yu Pan, Yi-Jia Liu, Xiaoping Zhou, Dongfei Huang, Zehao Shen, Jian Wang, Chuan‐Feng Li, G. Guo
{"title":"Experimental realization of strong coupling between a cold atomic ensemble and an optical fiber microcavity","authors":"Li Li, Yu Pan, Yi-Jia Liu, Xiaoping Zhou, Dongfei Huang, Zehao Shen, Jian Wang, Chuan‐Feng Li, G. Guo","doi":"10.3788/col202321.092702","DOIUrl":"https://doi.org/10.3788/col202321.092702","url":null,"abstract":"Cavity quantum electrodynamics (QED) system is a promising platform for quantum optics and quantum information experiments. And its core is the strong coupling between atoms and optical cavity, which causes difficulty in the overlap for the atoms and the antinode of optical cavity mode. Here, we use a programmable movable optical dipole trap to load a cold atomic ensemble into an optical fiber microcavity and realize the strong coupling between the atoms and the optical cavity in which the coupling strength can be improved by polarization gradient cooling and adiabatic loading. By the measurement of vacuum Rabi splitting, the coupling strength can be as high as g N = 2 π × 400 MHz, which means the effective atom number is N ef f = 16 and the collective cooperativity is C N = 1466. These results show this experimental system can be used for cold atomic ensemble and cold molecule based cavity QED research.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"6 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75628455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photonics 60 GBaud PDM-16QAM fiber-wireless 2 × 2 MIMO delivery at THz-band 光子学60 GBaud PDM-16QAM光纤无线2 × 2 MIMO传输在太赫兹波段
IF 3.5 2区 物理与天体物理
Chinese Optics Letters Pub Date : 2023-01-01 DOI: 10.3788/col202321.073901
Weiping Li, Jianjun Yu, Bowen Zhu, Jiao Zhang, M. Zhu, Chen Wang, Wen Zhou, Tangyao Xie, Jianguo Yu, F. Zhao
{"title":"Photonics 60 GBaud PDM-16QAM fiber-wireless 2 × 2 MIMO delivery at THz-band","authors":"Weiping Li, Jianjun Yu, Bowen Zhu, Jiao Zhang, M. Zhu, Chen Wang, Wen Zhou, Tangyao Xie, Jianguo Yu, F. Zhao","doi":"10.3788/col202321.073901","DOIUrl":"https://doi.org/10.3788/col202321.073901","url":null,"abstract":",","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"42 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72795357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual photopatterning of rotational fingerprint superstructures 旋转指纹超结构的双光模式
IF 3.5 2区 物理与天体物理
Chinese Optics Letters Pub Date : 2023-01-01 DOI: 10.3788/col202321.041603
Jintao Pan, Jiaxin Qian, Lingling Ma, Zeyu Wang, Ren Zheng, Ning Wang, Bing-Xiang Li, Yanqing Lu
{"title":"Dual photopatterning of rotational fingerprint superstructures","authors":"Jintao Pan, Jiaxin Qian, Lingling Ma, Zeyu Wang, Ren Zheng, Ning Wang, Bing-Xiang Li, Yanqing Lu","doi":"10.3788/col202321.041603","DOIUrl":"https://doi.org/10.3788/col202321.041603","url":null,"abstract":"","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"10 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72835832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Momentum filtering scheme of cooling atomic clouds for the Chinese Space Station 中国空间站冷却原子云的动量滤波方案
IF 3.5 2区 物理与天体物理
Chinese Optics Letters Pub Date : 2023-01-01 DOI: 10.3788/col202321.080201
Hui Li, Biao Wu, Jiachen Yu, X. Yuan, Xiaoji Zhou, Bin Wang, Weibiao Chen, Wei Xiong, Xuzong Chen
{"title":"Momentum filtering scheme of cooling atomic clouds for the Chinese Space Station","authors":"Hui Li, Biao Wu, Jiachen Yu, X. Yuan, Xiaoji Zhou, Bin Wang, Weibiao Chen, Wei Xiong, Xuzong Chen","doi":"10.3788/col202321.080201","DOIUrl":"https://doi.org/10.3788/col202321.080201","url":null,"abstract":"To obtain cold atom samples with temperatures lower than 100 pK in the cold atom physics rack experiment of the Chinese Space Station, we propose to use the momentum filtering method for deep cooling of atoms. This paper introduces the experimental results of the momentum filtering method verified by our ground testing system. In the experiment, we designed a specific experimental sequence of standing-wave light pulses to control the temperature, atomic number, and size of the atomic cloud. The results show that the momentum filter can effectively and conveniently reduce the temperature of the atomic cloud and the energy of Bose – Einstein condensation, and can be flexibly combined with other cooling methods to enhance the cooling effect. This work provides a method for the atomic cooling scheme of the ultra-cold atomic system on the ground and on the space station, and shows a way of deep cooling atoms.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"22 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86537915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信