{"title":"Inverse design on terahertz multilevel diffractive lens based on 3D printing","authors":"Chenyu Shi, Yu Wang, Qiongjun Liu, Sai Chen, Weipeng Zhao, Xiaojun Wu, Jierong Cheng, Shengjiang Chang","doi":"10.3788/col202321.110006","DOIUrl":"https://doi.org/10.3788/col202321.110006","url":null,"abstract":"Terahertz (THz) lenses have numerous applications in imaging and communication systems. Currently, the common THz lenses are still based on the traditional design of a circular convex lens. In this work, we present a method for the design of a 3D-printed multilevel THz lens, taking advantage of the benefits offered by 3D printing technology, including compact size, lightweight construction, and cost-effectiveness. The approach utilizes an inverse design methodology, employing optimization methods to promise accurate performance. To reduce simulation time, we employ the finite-difference time-domain method in cylindrical coordinates for near-field computation and couple it with the Rayleigh–Sommerfeld diffraction theory to address far-field calculations. This technology holds great potential for various applications in the field of THz imaging, sensing, and communications, offering a novel approach to the design and development of functional devices operating in the THz frequency range.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135612376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiahui Zhang, Feng Xu, Ran An, Lin Wang, Min Jiang, Guanghui Wang, Yanqing Lu
{"title":"Integrated fluorescence excitation, collection, and filtering on a GaN waveguide chip","authors":"Jiahui Zhang, Feng Xu, Ran An, Lin Wang, Min Jiang, Guanghui Wang, Yanqing Lu","doi":"10.3788/col202321.101203","DOIUrl":"https://doi.org/10.3788/col202321.101203","url":null,"abstract":"Fluorescence detection is widely used in biology and medicine, while the realization of on-chip fluorescence detection is vital for the portable and point-of-care test (POCT) application. In this Letter, we propose an efficient fluorescence excitation and collection system using an integrated GaN chip consisting of a slot waveguide and a one-dimensional photonic crystal (1D PC) waveguide. The slot waveguide is used to confine the excitation light for intense light–sample interaction, and the one-trip collection efficiency at the end of slot waveguide is up to 14.65%. More interestingly, due to the introduction of the 1D PC waveguide, the fluorescence signal is directly filtered out, and the excitation light is reflected to the slot waveguide for multiple excitations. Its transmittances for the designed exciting wavelength of 520 nm and the fluorescent wavelength of 612 nm are 0.2% and 85.4%, respectively. Finally, based on numerical analysis, the total fluorescence collection efficiency in our system amounts to 15.93%. It is the first time, to our knowledge, that the concept of an all-in-one-chip fluorescence detection system has been proposed, which paves the way for on-chip fluorescence excitation and collection, and may find potential applications of miniaturized and portable devices for biomedical fluorescence detection.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"138 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136206809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanchi Xia, Tao Zhang, Yuehui Wang, Yaping Qi, Fan Zhang, Zhenping Wu, Yang Zhang
{"title":"Paper-based amorphous Ga2O3 solar-blind photodetector with improved flexibility and stability","authors":"Hanchi Xia, Tao Zhang, Yuehui Wang, Yaping Qi, Fan Zhang, Zhenping Wu, Yang Zhang","doi":"10.3788/col202321.101601","DOIUrl":"https://doi.org/10.3788/col202321.101601","url":null,"abstract":"Flexible devices provide advantages such as conformability, portability, and low cost. Paper-based electronics offers a number of advantages for many applications. It is lightweight, inexpensive, and biodegradable, making it an ideal choice for disposable electronics. In this work, we propose a novel configuration of photodetectors using paper as flexible substrates and amorphous Ga2O3 as the active materials, respectively. The photoresponse characteristics are investigated systematically. A decent responsivity yield and a specific detectivity of up to 66 mA/W and 3×1012 Jones were obtained at a low operating voltage of 10 V. The experiments also demonstrate that neither the twisting nor bending deformation can bring obvious performance degradation to the device. This work presents a candidate strategy for the application of conventional paper substrates to low-cost flexible solar-blind photodetectors, showing the potential of being integrated with other materials to create interactive flexible circuits.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136207199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Measurement of molecular alignment with deep learning-based M-XFROG technique","authors":"Wanchen Tao, Siqi Sun, Lixin He, Yanqing He, Jianchang Hu, Yu Deng, Chengqing Xu, Pengfei Lan, Peixiang Lu","doi":"10.3788/col202321.120021","DOIUrl":"https://doi.org/10.3788/col202321.120021","url":null,"abstract":"We demonstrate a deep-learning neural network (DNN) method for the measurement of molecular alignment by using the molecular-alignment-based cross-correlation polarization-gating frequency resolved optical gating (M-XFROG) technique. Our network has the capacity for direct measurement of molecular alignment from the FROG traces. In a proof-of-principle experiment, we have demonstrated our method in O2 molecules. With our method, the molecular alignment factor ⟨cos2 θ⟩(t) of O2, impulsively excited by a pump pulse, was directly reconstructed. The accuracy and validity of the reconstruction have been verified by comparison with the simulations based on experimental parameters.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136259385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Li, Yu Pan, Yi-Jia Liu, Xiaoping Zhou, Dongfei Huang, Zehao Shen, Jian Wang, Chuan‐Feng Li, G. Guo
{"title":"Experimental realization of strong coupling between a cold atomic ensemble and an optical fiber microcavity","authors":"Li Li, Yu Pan, Yi-Jia Liu, Xiaoping Zhou, Dongfei Huang, Zehao Shen, Jian Wang, Chuan‐Feng Li, G. Guo","doi":"10.3788/col202321.092702","DOIUrl":"https://doi.org/10.3788/col202321.092702","url":null,"abstract":"Cavity quantum electrodynamics (QED) system is a promising platform for quantum optics and quantum information experiments. And its core is the strong coupling between atoms and optical cavity, which causes difficulty in the overlap for the atoms and the antinode of optical cavity mode. Here, we use a programmable movable optical dipole trap to load a cold atomic ensemble into an optical fiber microcavity and realize the strong coupling between the atoms and the optical cavity in which the coupling strength can be improved by polarization gradient cooling and adiabatic loading. By the measurement of vacuum Rabi splitting, the coupling strength can be as high as g N = 2 π × 400 MHz, which means the effective atom number is N ef f = 16 and the collective cooperativity is C N = 1466. These results show this experimental system can be used for cold atomic ensemble and cold molecule based cavity QED research.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"6 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75628455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Momentum filtering scheme of cooling atomic clouds for the Chinese Space Station","authors":"Hui Li, Biao Wu, Jiachen Yu, X. Yuan, Xiaoji Zhou, Bin Wang, Weibiao Chen, Wei Xiong, Xuzong Chen","doi":"10.3788/col202321.080201","DOIUrl":"https://doi.org/10.3788/col202321.080201","url":null,"abstract":"To obtain cold atom samples with temperatures lower than 100 pK in the cold atom physics rack experiment of the Chinese Space Station, we propose to use the momentum filtering method for deep cooling of atoms. This paper introduces the experimental results of the momentum filtering method verified by our ground testing system. In the experiment, we designed a specific experimental sequence of standing-wave light pulses to control the temperature, atomic number, and size of the atomic cloud. The results show that the momentum filter can effectively and conveniently reduce the temperature of the atomic cloud and the energy of Bose – Einstein condensation, and can be flexibly combined with other cooling methods to enhance the cooling effect. This work provides a method for the atomic cooling scheme of the ultra-cold atomic system on the ground and on the space station, and shows a way of deep cooling atoms.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"22 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86537915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}