{"title":"Photon pair generation from lithium niobate metasurface with tunable spatial entanglement","authors":"Jihua Zhang, Jinyong Ma, D. Neshev, A. Sukhorukov","doi":"10.3788/COL202321.010005","DOIUrl":"https://doi.org/10.3788/COL202321.010005","url":null,"abstract":"Two-photon state with spatial entanglement is an essential resource for testing fundamental laws of quantum mechanics and various quantum applications. Its creation typically relies on spontaneous parametric down-conversion in bulky nonlinear crystals where the tunability of spatial entanglement is limited. Here, we predict that ultrathin nonlinear lithium niobate metasurfaces can generate and diversely tune spatially entangled photon pairs. The spatial properties of photons including the emission pattern, rate, and degree of spatial entanglement are analysed theoretically with the coupled mode theory and Schmidt decomposition method. We show that by leveraging the strong angular dispersion of the metasurface, the degree of spatial entanglement quantified by the Schmidt number can be decreased or increased by changing the pump laser wavelength and a Gaussian beam size. This flexibility can facilitate diverse quantum applications of entangled photon states generated from nonlinear metasurfaces.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"58 2 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90937055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei-Hang Zhang, Ying-hao Ye, Lei Zeng, Enze Li, Jing-Yuan Peng, D. Ding, B. Shi
{"title":"High-dimensional frequency conversion in a hot atomic system","authors":"Wei-Hang Zhang, Ying-hao Ye, Lei Zeng, Enze Li, Jing-Yuan Peng, D. Ding, B. Shi","doi":"10.3788/col202321.092701","DOIUrl":"https://doi.org/10.3788/col202321.092701","url":null,"abstract":"One of the major difficulties in realizing a high-dimensional frequency converter for conventional optical vortex (COV) stems from the difference in ring diameter of COV modes with different topological charge numbers l. Here, we implement a high-dimensional frequency convertor for perfect optical vortex (POV) modes with invariant size through the four-wave mixing (FWM) process by utilizing Bessel-Gaussian beams instead of Laguerre-Gaussian beams. The measured conversion efficiency from 1530 nm to 795 nm is independent of l at least in subspace of {-6,...,6}, and the achieved conversion fidelities for two-dimensional (2D) superposed POV states exceed 97%. We further realize the frequency conversion of 3D, 5D and 7D superposition states with fidelities as high as 96.70%, 89.16% and 88.68%, respectively. The reported scheme is implemented in hot atomic vapor, it's also compatible with the cold atomic system and may find applications in high-capacity and long-distance quantum communication.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"41 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84942117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Ba/Sr ratio on the nonlinear optical properties of Ba1-xSrxTiO3 (x = 0.1–0.9) thin films","authors":"Depeng Wang, R. Niu, L. Cui, Weitian Wang","doi":"10.3788/col202321.041601","DOIUrl":"https://doi.org/10.3788/col202321.041601","url":null,"abstract":"","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"25 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73545556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhe Sun, Tong Tian, Suk-Sim Oh, Jiang-Shan Wang, G. Cheng, Xuelong Li
{"title":"Underwater ghost imaging with pseudo-Bessel-ring modulation pattern","authors":"Zhe Sun, Tong Tian, Suk-Sim Oh, Jiang-Shan Wang, G. Cheng, Xuelong Li","doi":"10.3788/col202321.081101","DOIUrl":"https://doi.org/10.3788/col202321.081101","url":null,"abstract":"In this study, we propose an underwater ghost-imaging scheme using a modulation pattern combining offset-position pseudo-Bessel-ring (OPBR) and random binary (RB) speckle pattern illumination. We design the experiments based on modulation rules to order the OPBR speckle patterns. We retrieve ghost images by OPBR beam with different modulation speckle sizes. The obtained ghost images have a better contrast-to-noise rate compared to RB beam ghost imaging under the same conditions. We verify the results both in the experiment and simulation. In addition, we also check the image quality at different turbidities. Furthermore, we demonstrate that the OPBR speckle pattern also provides better image quality in other objects. The proposed method promises wide applications in highly scattering media","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"87 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79957840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photonic and phononic interface states based on sunflower-type crystals [Invited]","authors":"Zixian Guo, Bei Yan, J. Liu","doi":"10.3788/col202321.061301","DOIUrl":"https://doi.org/10.3788/col202321.061301","url":null,"abstract":"Interface states are widely applied in waveguide devices. However, previous studies failed to achieve photonic and phononic interface states independent of each other in the same crystal structure depending on the behavior of the crystal structure, i.e","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"70 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79569843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinhu Long, Jiayi Zhang, Hongxiang Chang, Qi Chang, Yu Deng, Zixin Yang, Jian Wu, R. Su, Yanxin Ma, P. Ma, P. Zhou
{"title":"Coherent combining of a fiber laser array via cascaded internal phase control technique","authors":"Jinhu Long, Jiayi Zhang, Hongxiang Chang, Qi Chang, Yu Deng, Zixin Yang, Jian Wu, R. Su, Yanxin Ma, P. Ma, P. Zhou","doi":"10.3788/col202321.081402","DOIUrl":"https://doi.org/10.3788/col202321.081402","url":null,"abstract":"We experimentally demonstrated a cascaded internal phase control technique. A laser array with 12 channels was divided into three sub-arrays and a stage array, and phases of the sub-arrays and the stage array were locked by four phase controllers based on the stochastic parallel gradient descent (SPGD) algorithm, respectively. In this way, the phases of the whole array were locked, and the visibility of the interference pattern of the whole emitted laser array in the far field was ∼ 93%. In addition, the technique has the advantage of element expanding and can be further used in the high-power coherent beam combination (CBC) system due to its compact spatial structure","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"28 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79313373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianyue Zhang, Zhiyuan Wang, Xiangchao Zhong, Ying Che, Xiangping Li
{"title":"Photothermal nonlinear scattering of shell-isolated gold nanoparticles and applications in super-resolution imaging","authors":"Tianyue Zhang, Zhiyuan Wang, Xiangchao Zhong, Ying Che, Xiangping Li","doi":"10.3788/col202321.103601","DOIUrl":"https://doi.org/10.3788/col202321.103601","url":null,"abstract":"In this Letter, we report on the investigations of nonlinear scattering of plasmonic nanoparticles by manipulating ambient environments. We create different local thermal hosts for gold nanospheres that are immersed in oil, encapsulated in silica glass and also coated with silica shells. In terms of regulable effective thermal conductivity, silica coatings are found to contribute significantly to scattering saturation. Benefitting from the enhanced thermal stability and the reduced plasmonic coupling provided by the shell-isolated nanoparticles, we achieve super-resolution imaging with a feature size of 52 nm ( λ = 10), and we can readily resolve pairs of nanoparticles with a gap-to-gap distance of 5 nm.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"37 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81117594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenfu Yu, Xuyi Zhao, Shixian Han, A. Du, Ruotao Liu, C. Cao, Jin-yi Yan, Jin Yang, Hua Huang, Hai-long Wang, Qian Gong
{"title":"InAs/GaAs quantum dot laterally coupled distributed feedback lasers at 1.3 μm","authors":"Wenfu Yu, Xuyi Zhao, Shixian Han, A. Du, Ruotao Liu, C. Cao, Jin-yi Yan, Jin Yang, Hua Huang, Hai-long Wang, Qian Gong","doi":"10.3788/col202321.011402","DOIUrl":"https://doi.org/10.3788/col202321.011402","url":null,"abstract":"We report the InAs/GaAs quantum dot laterally coupled distributed feedback (LC-DFB) lasers operating at room temperature in the wavelength range of 1.31 μ m. First-order chromium Bragg gratings were fabricated alongside the ridge waveguide to obtain the maximum coupling coefficient with the optical field. Stable continuous-wave single-frequency operation has been achieved with output power above 5 mW/facet and side mode suppression ratio exceeding 52 dB. Moreover, a single chip integrating three LC-DFB lasers was tentatively explored. The three LC-DFB lasers on the chip can operate in single mode at room temperature, covering the wavelength span of 35.6 nm.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"27 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74329255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}