Li Han, Louis-Claude Canon, J. Liu, Y. Robert, F. Vivien
{"title":"Improved Energy-Aware Strategies for Periodic Real-Time Tasks under Reliability Constraints","authors":"Li Han, Louis-Claude Canon, J. Liu, Y. Robert, F. Vivien","doi":"10.1109/RTSS46320.2019.00013","DOIUrl":"https://doi.org/10.1109/RTSS46320.2019.00013","url":null,"abstract":"This paper revisits the real-time scheduling problem recently introduced by Haque, Aydin and Zhu (2017). In this challenging problem, task redundancy ensures a given level of reliability while incurring a significant energy cost. By carefully setting processing frequencies, allocating tasks to processors and ordering task executions, we improve on the previous state-of-the-art approach with an average gain in energy of 20%. Furthermore, we establish the first complexity results for specific instances of the problem.","PeriodicalId":102892,"journal":{"name":"2019 IEEE Real-Time Systems Symposium (RTSS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123501698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Semi-Clairvoyance in Mixed-Criticality Scheduling","authors":"Kunal Agrawal, Sanjoy Baruah, A. Burns","doi":"10.1109/RTSS46320.2019.00047","DOIUrl":"https://doi.org/10.1109/RTSS46320.2019.00047","url":null,"abstract":"In the Vestal model of mixed-criticality systems, jobs are characterized by multiple different estimates of their actual, but unknown, worst-case execution time (WCET) parameters. Prior work on mixed-criticality scheduling theory assumes that the execution duration of a job is only revealed by actually executing the job through to completion. We consider a different *semi-clairvoyant* model here, in which it is assumed that upon arrival a job reveals which of its WCET parameters it will respect. We identify circumstances under which this is a reasonable model, and design and evaluate scheduling algorithms appropriate for this model. We show that such semi-clairvoyance yields a significant quantifiable benefit over non-clairvoyance, in terms of both the complexity of schedulability analysis and the speedup needed to ensure schedulability.","PeriodicalId":102892,"journal":{"name":"2019 IEEE Real-Time Systems Symposium (RTSS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126912032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Youngeun Cho, Do Hyung Kim, Daechul Park, Seung Su Lee, Chang-Gun Lee
{"title":"Conditionally Optimal Task Parallelization for Global EDF on Multi-core Systems","authors":"Youngeun Cho, Do Hyung Kim, Daechul Park, Seung Su Lee, Chang-Gun Lee","doi":"10.1109/RTSS46320.2019.00027","DOIUrl":"https://doi.org/10.1109/RTSS46320.2019.00027","url":null,"abstract":"Targeting global EDF scheduling, this paper proposes a conditionally optimal algorithm for parallelizing tasks with parallelization freedom. For this, we extend the interference-based sufficient schedulability analysis and derive monotonic increasing properties of both tolerance and interference for the schedulability. Leveraging those properties, we propose a one-way search based conditionally optimal algorithm with polynomial time complexity. Our extensive experiments through both simulation and actual implementation show that our proposed approach can significantly improve the schedulability up to 60 percent.","PeriodicalId":102892,"journal":{"name":"2019 IEEE Real-Time Systems Symposium (RTSS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129924065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cache Persistence Analysis: Finally Exact","authors":"Gregory Stock, S. Hahn, J. Reineke","doi":"10.1109/RTSS46320.2019.00049","DOIUrl":"https://doi.org/10.1109/RTSS46320.2019.00049","url":null,"abstract":"Cache persistence analysis is an important part of worst-case execution time (WCET) analysis. It has been extensively studied in the past twenty years. Despite these efforts, all existing persistence analyses are approximative in the sense that they are not guaranteed to find all persistent memory blocks. In this paper, we close this gap by introducing the first exact persistence analysis for caches with least-recently-used (LRU) replacement. To this end, we first introduce an exact abstraction that exploits monotonicity properties of LRU to significantly reduce the information the analysis needs to maintain for exact persistence classifications. We show how to efficiently implement this abstraction using zero-suppressed binary decision diagrams (ZDDs) and introduce novel techniques to deal with uncertainty that arises during the analysis of data caches. The experimental evaluation demonstrates that the new exact analysis is competitive with state-of-the-art inexact analyses in terms of both memory consumption and analysis run time, which is somewhat surprising as we show that persistence analysis is NP-complete. We also observe that while prior analyses are not exact in theory they come close to being exact in practice.","PeriodicalId":102892,"journal":{"name":"2019 IEEE Real-Time Systems Symposium (RTSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128898124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesizing Real-Time Schedulability Tests using Evolutionary Algorithms: A Proof of Concept","authors":"P. Dziurzański, Robert I. Davis, L. Indrusiak","doi":"10.1109/RTSS46320.2019.00015","DOIUrl":"https://doi.org/10.1109/RTSS46320.2019.00015","url":null,"abstract":"This paper assesses the potential for mechanised assistance in the formulation of schedulability tests. The novel idea is to use evolutionary algorithms to semi-automate the process of deriving response time analysis equations. The proof of concept presented in this paper focuses on the synthesis of mathematical expressions for the schedulability analysis of messages on Controller Area Network (CAN). This problem is of particular interest, since the original analysis developed in the early 1990s was later found to be flawed. Further, as well as known exact tests that have been formally proven, there are a number of useful sufficient tests of pseudo-polynomial complexity and closed-form polynomial-time upper bounds on response times that provide useful comparisons.","PeriodicalId":102892,"journal":{"name":"2019 IEEE Real-Time Systems Symposium (RTSS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114843231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}