Jay V Kalinani, Liwei Ji, Lorenzo Ennoggi, Federico G Lopez Armengol, Lucas Timotheo Sanches, Bing-Jyun Tsao, Steven R Brandt, Manuela Campanelli, Riccardo Ciolfi, Bruno Giacomazzo, Roland Haas, Erik Schnetter and Yosef Zlochower
{"title":"AsterX: a new open-source GPU-accelerated GRMHD code for dynamical spacetimes","authors":"Jay V Kalinani, Liwei Ji, Lorenzo Ennoggi, Federico G Lopez Armengol, Lucas Timotheo Sanches, Bing-Jyun Tsao, Steven R Brandt, Manuela Campanelli, Riccardo Ciolfi, Bruno Giacomazzo, Roland Haas, Erik Schnetter and Yosef Zlochower","doi":"10.1088/1361-6382/ad9c11","DOIUrl":"https://doi.org/10.1088/1361-6382/ad9c11","url":null,"abstract":"We present AsterX, a novel open-source, modular, GPU-accelerated, fully general relativistic magnetohydrodynamic (GRMHD) code designed for dynamic spacetimes in 3D Cartesian coordinates, and tailored for exascale computing. We utilize block-structured adaptive mesh refinement (AMR) through CarpetX, the new driver for the Einstein Toolkit, which is built on AMReX, a software framework for massively parallel applications. AsterX employs the Valencia formulation for GRMHD, coupled with the ‘Z4c’ formalism for spacetime evolution, while incorporating high resolution shock capturing schemes to accurately handle the hydrodynamics. AsterX has undergone rigorous testing in both static and dynamic spacetime, demonstrating remarkable accuracy and agreement with other codes in literature. Using subcycling in time, we find an overall performance gain of factor 2.5–4.5. Benchmarking the code through scaling tests on OLCF’s Frontier supercomputer, we demonstrate a weak scaling efficiency of about 67%–77% on 4096 nodes compared to an 8-node performance.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"129 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142887981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sensitivity functions of space-borne gravitational wave detectors under the metric gravity theory","authors":"Jing Zhou, Pan-Pan Wang and Cheng-Gang Shao","doi":"10.1088/1361-6382/ad9ce0","DOIUrl":"https://doi.org/10.1088/1361-6382/ad9ce0","url":null,"abstract":"Gravitational waves (GWs) have six possible polarization modes, and whose successful detection can effectively test the gravitational properties under the strong field theory and help distinguish between different theories of gravity. Space-based GW detectors can respond differently to different polarization modes and can be used to measure the polarization states of GWs. However, during the detection process, multiple noises can swamp the faint GW signals, thus, it is essential to develop highly sophisticated experimental techniques and data processing methods to suppress the noises. For the most dominant laser frequency noise, time-delay interferometry technique is employed to construct a virtual equal-arm interferometer by performing appropriate time-delay and linear combination of data streams. This ensures the laser frequency noise is suppressed below the noise floor composed of test-mass noise and shot noise. To present the responsiveness of the detector to the polarization modes of GW signals and to clarify the corresponding characteristic regularities. In this paper, we calculate and analyze the sensitivity functions of 45 core geometric time-delay interferometry technique (TDI) combinations under the six polarization modes allowed by the metric gravity theory. The analysis is based on arbitrary second-generation TDI that can be independently linearly expanded by first-generation generators. It turns out that the sensitivity functions of 45 TDI combinations in different polarization modes are classified into exactly the same 11 categories, and there are obvious characteristic patterns in the asymptotic behavior of these sensitivity functions. These results can help to measure the GW polarization states, understand the nature of fields beyond the gravitational field, and provide some support for distinguishing gravitational theories. In addition, the sensitivity functions of multi-type TDI combinations can be applied to the parameter estimation to improve the localization accuracy of all-sky GW sources.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"4 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring perturbative constraints in higher-order curvature gravity theories","authors":"Daniel Molano and Pedro Bargueño","doi":"10.1088/1361-6382/ad9ce1","DOIUrl":"https://doi.org/10.1088/1361-6382/ad9ce1","url":null,"abstract":"In the realm of general relativity (GR) and extended theories of gravity, obtaining solutions for scenarios of physical interest is a highly intricate challenge. By employing the formalism of mathematical perturbation theory within the GR framework, we demonstrate that, for a significant class of vacuum theories, the corresponding solutions do not yield additional effects beyond those predicted by GR’s perturbation theory. However, models characterized by terms of the form exhibit distinctive contributions not present in GR. We assert that fundamental limitations exist, explaining why solutions of certain models can deviate from their GR counterparts, indicating non-connected solutions or non-analytic behavior. Conversely, in the models , the solutions seamlessly connect with those of GR. This distinction highlights the nuanced interplay between higher-order curvature terms and their impact on gravitational dynamics, offering new insights into the landscape of modified gravity theories.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"32 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142879727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia-Rui Li, Yu-Jie Tan, Tao Jin, Wei-Sheng Huang, Hao Huang, Cheng-Gang Qin and Cheng-Gang Shao
{"title":"Experimental design for testing local Lorentz invariance violation in gravity","authors":"Jia-Rui Li, Yu-Jie Tan, Tao Jin, Wei-Sheng Huang, Hao Huang, Cheng-Gang Qin and Cheng-Gang Shao","doi":"10.1088/1361-6382/ad9c0c","DOIUrl":"https://doi.org/10.1088/1361-6382/ad9c0c","url":null,"abstract":"Local Lorentz invariance is an important foundation of General Relativity, and its high-precision testing can help to explore the unified theories. In this work, we focus on the local Lorentz violating effect in pure gravity with mass dimension d = 6, and study the experimental design for testing local Lorentz violation with precision torsion pendulum experiments. By designing the striped test and source masses, and setting the appropriate azimuth angles of the experimental setup, we found the constraint accuracy of the local Lorentz violation coefficients is expected to be improved by one to two orders of magnitude compared with the international optimal level. Moreover, considering the difficulty level of changing the azimuth angle of the experimental setup in practical experiments, we proposed two experimental strategies and separately studied the azimuth-angle configurations corresponding to the optimal constraint of the local Lorentz violating coefficients, which can guide the development of the later experiments.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"14 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142879725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metric symmetry by design in general relativity","authors":"Viktor T Toth","doi":"10.1088/1361-6382/ad9f15","DOIUrl":"https://doi.org/10.1088/1361-6382/ad9f15","url":null,"abstract":"The usual derivation of Einstein’s field equations from the Einstein–Hilbert action is performed by silently assuming the metric tensor’s symmetric character. If this symmetry is not assumed, the result is a new theory, such as Einstein’s attempted Unified Field Theory or Moffat’s Nonsymmetric Gravitational Theory. Explicitly enforcing the constraint by means of a Lagrange-multiplier term restores Einstein’s field equations, but the multiplier appears as an additional, unconstrained antisymmetric term. We briefly discuss the possible significance of this term with respect to a nonvanishing cosmological angular momentum, a sourced spin current, the nonsymmetric nature of the Einstein pseudotensor characterizing the energy–momentum of the gravitational field, and possible implications on attempts to obtain a quantum theory of gravity.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"50 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142879728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiawei Zhang, Peilong Yu, Shuyang Lin, Qinbo Ma, Zhe Han and Jianping Huang
{"title":"Amplitude stability research and experimental investigation of the actuation circuit of the inertial sensor for space gravitational wave detection","authors":"Jiawei Zhang, Peilong Yu, Shuyang Lin, Qinbo Ma, Zhe Han and Jianping Huang","doi":"10.1088/1361-6382/ad9c0d","DOIUrl":"https://doi.org/10.1088/1361-6382/ad9c0d","url":null,"abstract":"The primary measure of scientific performance for inertial sensors used in space gravitational wave detection is the residual acceleration noise of the test mass (TM). This residual noise arises from both the internal circuit and the external environment. The actuation circuit, a crucial component of the internal circuit, significantly affects the TM’s residual acceleration noise through its amplitude stability, thereby impacting the scientific performance of the inertial sensor. In this study, we designed the actuation circuit for an inertial sensor, developed a mathematical model to describe its amplitude stability, and experimentally verified the model’s accuracy. Experimental results demonstrate that the current design enables the actuation circuit to achieve an amplitude stability of 3.6 ppm Hz−1/2 at 1 mHz, thereby offering theoretical support for achieving a higher amplitude stability in the millihertz frequency band.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"6 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142879726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Séverin Nadji, Holger Wittel, Nikhil Mukund, James Lough, Christoph Affeldt, Fabio Bergamin, Marc Brinkmann, Volker Kringel, Harald Lück, Michael Weinert and Karsten Danzmann
{"title":"GEO 600 beam splitter thermal compensation system: new design and commissioning","authors":"Séverin Nadji, Holger Wittel, Nikhil Mukund, James Lough, Christoph Affeldt, Fabio Bergamin, Marc Brinkmann, Volker Kringel, Harald Lück, Michael Weinert and Karsten Danzmann","doi":"10.1088/1361-6382/ad9b69","DOIUrl":"https://doi.org/10.1088/1361-6382/ad9b69","url":null,"abstract":"Gravitational waves (GW) have revolutionised the field of astronomy by providing scientists with a new way to observe the Universe and gain a better understanding of exotic objects like black holes. Several large-scale laser interferometric GW detectors have been constructed worldwide, with a focus on achieving the best possible sensitivity. However, in order for a detector to operate at its intended sensitivity, its optics must be free from imperfections such as thermal lensing effects. In the GEO 600 GW detector, the beam splitter experiences a significant thermal lensing effect due to the high power build-up in the power recycling cavity combined with a very small beam waist. This causes the fundamental mode to be converted into higher order modes, subsequently impacting the detector’s performance. To address this issue, the GEO 600 detector is equipped with a thermal compensation system (TCS) applied to the beam splitter. This involves projecting a spatially tunable heating pattern through an optical system onto the beam splitter. The main objective of the TCS is to counteract the thermal lens at the beam splitter and restore the detector to its ideal operating condition. This paper presents the new beam splitter TCS in GEO 600, its commissioning and its effect on strain sensitivity. It also outlines the planned upgrade to further enhance the performance of the TCS.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayan Banerjee, Anirudh Pradhan, İzzet Sakallı and Archana Dixit
{"title":"Properties of interacting quark star in light of Rastall gravity","authors":"Ayan Banerjee, Anirudh Pradhan, İzzet Sakallı and Archana Dixit","doi":"10.1088/1361-6382/ad9c0f","DOIUrl":"https://doi.org/10.1088/1361-6382/ad9c0f","url":null,"abstract":"This study explores the properties of quark stars (QSs) formulated with an interacting quark matter equation of state within the framework of Rastall gravity, a modified theory of gravity. We derive the mass-radius relationships and calculate the maximum gravitational masses and their corresponding radii, comparing these results under both Rastall gravity and general relativity. Our analysis incorporates recent observational data, including the GW190425 event, to constrain the model parameters ( ). We also assess the stability of these QSs by evaluating their static stability, adiabatic index, and sound velocity profiles, thus confirming their viability within the modified gravitational framework.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-local quantum field theory from doubly special relativity","authors":"J J Relancio and L Santamaría-Sanz","doi":"10.1088/1361-6382/ad9c10","DOIUrl":"https://doi.org/10.1088/1361-6382/ad9c10","url":null,"abstract":"Doubly special relativity (DSR) is usually regarded as a low-energy limit of a quantum gravity theory with testable predictions. On the other hand, non-local quantum field theories have been presented as a solution to the inconsistencies arising when quantizing gravity. Here, we present a new formulation of quantum field theories in DSR with non-local behavior. Our construction restricts the models to those showing linear Lorentz invariance. We derive the deformed Klein–Gordon, Dirac, and electromagnetic Lagrangians, as well as the deformed Maxwell equations. We also discuss the electric potential of a point charge. Finally, we analyze the connection between the nonlocality of field theories and DSR.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"1152 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martina Adamo, Angel Ballesteros and Flavio Mercati
{"title":"Noncommutative lightcones from quantum SO(2,1) conformal groups","authors":"Martina Adamo, Angel Ballesteros and Flavio Mercati","doi":"10.1088/1361-6382/ad9a49","DOIUrl":"https://doi.org/10.1088/1361-6382/ad9a49","url":null,"abstract":"Five new families of noncommutative lightcones in dimensions are presented as quantizations of the inequivalent Poisson homogeneous structures that emerge when the lightcone is constructed as a homogeneous space of the SO(2,1) conformal group. Each of these noncommutative lightcones maintains covariance under the action of the respective quantum deformation of the SO(2,1) conformal group. We discuss the role played by SO(2,1) automorphisms in the classification of inequivalent Poisson homogeneous lightcones, as well as the geometric aspects of this construction. The localization properties of the novel quantum lightcones are analyzed and shown to be deeply connected with the geometric features of the Poisson homogeneous spaces.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"11 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}