Chinese MedicinePub Date : 2024-08-06DOI: 10.1186/s13020-024-00975-1
Ying Liu, Guoxin Zhang, Chunyan Zhu, Xuemin Yao, Wenli Wang, Li Shen, Haiping Wang, Na Lin
{"title":"The analgesic effects of Yu-Xue-Bi tablet (YXB) on mice with inflammatory pain by regulating LXA4-FPR2-TRPA1 pathway.","authors":"Ying Liu, Guoxin Zhang, Chunyan Zhu, Xuemin Yao, Wenli Wang, Li Shen, Haiping Wang, Na Lin","doi":"10.1186/s13020-024-00975-1","DOIUrl":"10.1186/s13020-024-00975-1","url":null,"abstract":"<p><strong>Background: </strong>Oxylipins including lipoxin A4 (LXA4) facilitate the resolution of inflammation and possess analgesic properties by inhibiting macrophage infiltration and transient receptor potential (TRP) protein expression. Yu-Xue-Bi Tablet (YXB) is a traditional Chinese patent medicine used to relieve inflammatory pain. Our previous research has shown that the analgesic effect of YXB is related to inhibiting peripheral inflammation and regulating macrophage infiltration, but the mechanism is not yet clear. The purpose of this study is to explore the mechanisms of YXB on mice models with Complete Freund's Adjuvant (CFA)-induced inflammatory pain from the perspective at the resolution of inflammation.</p><p><strong>Methods: </strong>Mechanical allodynia thresholds and heat hypersensitivity were measured using the Von Frey test and the hot plate test respectively. The open field test and the tail suspension test were employed to measure anxiety and depressive behaviors respectively. The expression of CD68<sup>+</sup> and the proportion of F4/80<sup>+</sup>CD11b<sup>+</sup> cells were measured by immunofluorescence staining and flow cytometry. The expression of transient receptor potential ankyrin 1(TRPA1) was measured by immunofluorescence staining and western blotting. Oxylipins omics analysis provided quantitative data on oxylipins in the paws, and enzyme linked immunosorbent assay (ELISA) was used to measure the levels of LXA4 there. Immunofluorescence staining was used to perform the expression of Leukotriene A4 hydroxylase (LTA4H) in the paws of mice. The impact of injecting the formyl peptide receptor 2(FPR2) antagonist WRW4 and the TRPA1 agonist AITC into the left paws was observed, focusing on the expression of mechanical allodynia thresholds, the expression of CD68<sup>+</sup>, TRPA1 in the paws, and Calcitonin gene-related peptide (CGRP) in the L5 spinal dorsal horn.</p><p><strong>Results: </strong>YXB elevated mechanical allodynia thresholds, alleviated heat hypersensitivity and anxiety and depressive behaviors in CFA mice. It significantly reduced the number of CD68<sup>+</sup> and proportion of F4/80<sup>+</sup>CD11b<sup>+</sup> within the paws, thereby decreasing macrophage infiltration. Additionally, it diminished the expression of TRPA1 in the paws and TRPV1 in the DRG, leading to an inhibition of peripheral sensitization. Through quantitative analysis, it was found that YXB could modulate DHA-derived oxylipins and LXA4. ELISA results indicated that YXB elevated the levels of LXA4 and inhibited the expression of LAT4H in the paws. Furthermore, the pro-resolution and analgesic effects of YXB were hindered after administration of the FPR2 antagonist. Compared with the AITC group, YXB showed no significant improvement in anti-inflammatory and analgesic effects.</p><p><strong>Conclusions: </strong>YXB can regulate the oxylipins of paws in CFA mice to promote the resolution of inflammation. The LXA4-FPR2-TRPA1 pathway i","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"19 1","pages":"104"},"PeriodicalIF":5.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302111/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chinese MedicinePub Date : 2024-07-24DOI: 10.1186/s13020-024-00971-5
Heqin Li, Xuwen Jiang, Kiyoshi Mashiguchi, Shinjiro Yamaguchi, Shanfa Lu
{"title":"Biosynthesis and signal transduction of plant growth regulators and their effects on bioactive compound production in Salvia miltiorrhiza (Danshen).","authors":"Heqin Li, Xuwen Jiang, Kiyoshi Mashiguchi, Shinjiro Yamaguchi, Shanfa Lu","doi":"10.1186/s13020-024-00971-5","DOIUrl":"10.1186/s13020-024-00971-5","url":null,"abstract":"<p><p>Plant growth regulators (PGRs) are involved in multiple aspects of plant life, including plant growth, development, and response to environmental stimuli. They are also vital for the formation of secondary metabolites in various plants. Salvia miltiorrhiza is a famous herbal medicine and has been used commonly for > 2000 years in China, as well as widely used in many other countries. S. miltiorrhiza is extensively used to treat cardiovascular and cerebrovascular diseases in clinical practices and has specific merit against various diseases. Owing to its outstanding medicinal and commercial potential, S. miltiorrhiza has been extensively investigated as an ideal model system for medicinal plant biology. Tanshinones and phenolic acids are primary pharmacological constituents of S. miltiorrhiza. As the growing market for S. miltiorrhiza, the enhancement of its bioactive compounds has become a research hotspot. S. miltiorrhiza exhibits a significant response to various PGRs in the production of phenolic acids and tanshinones. Here, we briefly review the biosynthesis and signal transduction of PGRs in plants. The effects and mechanisms of PGRs on bioactive compound production in S. miltiorrhiza are systematically summarized and future research is discussed. This article provides a scientific basis for further research, cultivation, and metabolic engineering in S. miltiorrhiza.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"19 1","pages":"102"},"PeriodicalIF":5.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267865/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sound as a bell: a deep learning approach for health status classification through speech acoustic biomarkers.","authors":"Yanbing Wang, Haiyan Wang, Zhuoxuan Li, Haoran Zhang, Liwen Yang, Jiarui Li, Zixiang Tang, Shujuan Hou, Qi Wang","doi":"10.1186/s13020-024-00973-3","DOIUrl":"10.1186/s13020-024-00973-3","url":null,"abstract":"<p><strong>Background: </strong>Human health is a complex, dynamic concept encompassing a spectrum of states influenced by genetic, environmental, physiological, and psychological factors. Traditional Chinese Medicine categorizes health into nine body constitutional types, each reflecting unique balances or imbalances in vital energies, influencing physical, mental, and emotional states. Advances in machine learning models offer promising avenues for diagnosing conditions like Alzheimer's, dementia, and respiratory diseases by analyzing speech patterns, enabling complementary non-invasive disease diagnosis. The study aims to use speech audio to identify subhealth populations characterized by unbalanced constitution types.</p><p><strong>Methods: </strong>Participants, aged 18-45, were selected from the Acoustic Study of Health. Audio recordings were collected using ATR2500X-USB microphones and Praat software. Exclusion criteria included recent illness, dental issues, and specific medical histories. The audio data were preprocessed to Mel-frequency cepstral coefficients (MFCCs) for model training. Three deep learning models-1-Dimensional Convolution Network (Conv1D), 2-Dimensional Convolution Network (Conv2D), and Long Short-Term Memory (LSTM)-were implemented using Python to classify health status. Saliency maps were generated to provide model explainability.</p><p><strong>Results: </strong>The study used 1,378 recordings from balanced (healthy) and 1,413 from unbalanced (subhealth) types. The Conv1D model achieved a training accuracy of 91.91% and validation accuracy of 84.19%. The Conv2D model had 96.19% training accuracy and 84.93% validation accuracy. The LSTM model showed 92.79% training accuracy and 87.13% validation accuracy, with early signs of overfitting. AUC scores were 0.92 and 0.94 (Conv1D), 0.99 (Conv2D), and 0.97 (LSTM). All models demonstrated robust performance, with Conv2D excelling in discrimination accuracy.</p><p><strong>Conclusions: </strong>The deep learning classification of human speech audio for health status using body constitution types showed promising results with Conv1D, Conv2D, and LSTM models. Analysis of ROC curves, training accuracy, and validation accuracy showed all models robustly distinguished between balanced and unbalanced constitution types. Conv2D excelled with good accuracy, while Conv1D and LSTM also performed well, affirming their reliability. The study integrates constitution theory and deep learning technologies to classify subhealth populations using noninvasive approach, thereby promoting personalized medicine and early intervention strategies.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"19 1","pages":"101"},"PeriodicalIF":5.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267751/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bridging cultures: Chinese elements in scientific illustrations.","authors":"Jianyou Gu, Wenying Zhang, Xianxing Wang, Qiang Zhou, Junfeng Zhang, Fuming Xie, Renpei Xia, Zhe-Sheng Chen, Huaizhi Wang","doi":"10.1186/s13020-024-00972-4","DOIUrl":"10.1186/s13020-024-00972-4","url":null,"abstract":"<p><p>In the context of globalization, the integration of cultural elements into scientific research, particularly through the incorporation of traditional Chinese cultural motifs in scientific illustrations, represents a novel frontier in enhancing the universality and appeal of scientific discoveries. This paper explores the innovative practice of embedding traditional Chinese cultural elements into scientific paper illustrations, highlighting its significant role in augmenting the global appeal of research findings, promoting diversity and innovation in scientific inquiry, and facilitating cross-cultural understanding. Through a series of case studies, including symbolic representations of ancient myths and the use of traditional themes to elucidate complex scientific phenomena, we demonstrate how this cultural integration not only makes scientific content more accessible and engaging but also fosters a deeper appreciation of Chinese heritage among international audiences. This approach not only bridges the gap between science and culture but also contributes to a more inclusive and interconnected global scientific community, underscoring the importance of cultural diversity in enriching scientific exploration and communication.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"19 1","pages":"103"},"PeriodicalIF":5.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chinese MedicinePub Date : 2024-07-16DOI: 10.1186/s13020-024-00970-6
Chang Rao, Ruixue Hu, Yongxin Hu, Yan Jiang, Xu Zou, Huilan Tang, Xing Chen, Xiaoli He, Guang Hu
{"title":"Theoretical exploring of potential mechanisms of antithrombotic ingredients in danshen-chishao herb-pair by network pharmacological study, molecular docking and zebrafish models.","authors":"Chang Rao, Ruixue Hu, Yongxin Hu, Yan Jiang, Xu Zou, Huilan Tang, Xing Chen, Xiaoli He, Guang Hu","doi":"10.1186/s13020-024-00970-6","DOIUrl":"10.1186/s13020-024-00970-6","url":null,"abstract":"<p><strong>Background: </strong>Salvia miltiorrhiza (Danshen, DS) and Radix Paeoniae Rubra (Chishao, CS) herbal pair (DS-CS) is a famous traditional Chinese combination which has been used as antithrombotic formular for centuries. However, there is still lack of sufficient scientific evidence to illustrate its underlying mechanisms. The purpose of this study is to investigate the antithrombotic effects of DS-CS extract in zebrafish and explore its possible mechanism of action.</p><p><strong>Methods: </strong>The quality of traditional Chinese medicines DS and CS granules was evaluated using High Performance Liquid Chromatography (HPLC). Subsequently, the therapeutic effect of the DS-CS combination and its components, Salvianolic Acid A (SAA) and Paeoniflorin (PF), in various concentrations on thrombosis was experimentally validated. Moreover, the interaction between DS-CS and the thrombosis disease targets was analyzed through network pharmacology, predicting the potential antithrombotic mechanism of DS-CS. Molecular docking and in vivo zebrafish experiments were conducted to validate the predicted targets, with qRT-PCR utilized for target validation.</p><p><strong>Results: </strong>DS-CS exhibited anti-thrombotic effect in zebrafish with concentrations ranging from 25 to 300 μg/mL. The co-administration of PF and SAA at 25 μg/mL each revealed a synergistic antithrombotic effect exceeding that of individual components when contrasted with PHZ treatment. Protein-protein interaction (PPI) analysis identified key genes, including Albumin (ALB), Proto-oncogene tyro-sine-protein kinase Src (SRC), Matrix metalloproteinase-9 (MMP9), Caspase-3 (CASP3), Epidermal growth factor receptor (EGFR), Fibroblast growth factor 2 (FGF2), Vascular endothelial growth factor receptor 2 (KDR), Matrix metalloprotein-ase-2(MMP2), Thrombin (F2), and Coagulation factor Xa (F10), associated with the antithrombotic action of PF and SAA. Furthermore, KEGG pathway analysis indicated involvement of lipid metabolism and atherosclerosis pathways. Molecular docking revealed strong binding of PF and SAA to pivotal hub genes, such as SRC, EGFR, and F10. The experimental findings demonstrated that DS-CS could upregulate the mRNA expression levels of EGFR while inhibiting F10 and SRC mRNA levels, thereby ameliorating thrombotic conditions.</p><p><strong>Conclusion: </strong>This research provided valuable insights into the potential mechanisms underlying the antithrombotic activity of DS-CS. Our findings suggested that PF and SAA could be the key active ingredients responsible for this activity. The antithrombotic effects of DS-CS appeared to be mediated through the regulation of mRNA expression of SRC, EGFR, and F10. These results enhanced our understanding of DS-CS's therapeutic potential and lay the groundwork for future studies to further elucidate its mechanisms of action.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"19 1","pages":"100"},"PeriodicalIF":5.3,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deciphering the benefits and intensity levels of primary metabolites from Allium macrostemon Bunge and Allium chinense G. Don.","authors":"Zifei Qin, Yuan Li, Dongmei Liu, Yuzhuo Hua, Yuandong Lv, Xiaojian Zhang, Cailian Fan, Jing Yang","doi":"10.1186/s13020-024-00957-3","DOIUrl":"10.1186/s13020-024-00957-3","url":null,"abstract":"<p><strong>Background: </strong>Allii Macrostemonis Bulbus is also named Xiebai in China. It is an edible vegetable, and also a famous herb for treating coronary heart disease. Allium chinense G. Don (ACGD) and Allium macrostemon Bunge (AMB) are it botanical sources. The aim of this study was to explore the cardioprotective effects, and decipher the visual spatial distribution and absolute content of primary metabolites derived from these two herbs.</p><p><strong>Methods: </strong>H9c2 cells were used to perform the hypoxia-reoxygenation (H/R)-induced myocardial injury model. Their protective effects were evaluated by apoptosis levels. Furthermore, matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry imaging approach (MALDI-TOF MSI) was carried out to present the spatial location of primary metabolites including fatty acids, amino acids, carotenoids, and vitamins in these two Allium herbs. Multiple analytical methods were applied to perform quantitative analysis of these primary metabolites in AMB and ACGD bulbs by liquid chromatography tandem mass spectrometry (LC-MS).</p><p><strong>Results: </strong>First, AMB and ACGD extracts both could increase the cell viability in H9c2 cells, and attenuate H/R-induced injury. They markedly decreased apoptosis, accompanied by activating the BCL-2/BAX pathway. Further, MALDI-TOF MSI-based relative quantification results showed several amino acids, fatty acids, carotenoids, and vitamins were largely rich in the tunics and outside scales of fresh bulbs, while some primary metabolites were abundant in their developing flower buds. Absolute quantification results displayed total contents of amino acids in ACGD bulbs were higher than those in AMB, while total contents of fatty acids and vitamins provides opposite trends in these two Allium herbs. The total contents of carotenoids and trace elements showed no significant differences between AMB and ACGD samples.</p><p><strong>Conclusions: </strong>This study would be helpful to understand the myocardial injury protection effects of these two Allium herbs, and the spatial accumulation and quantitative content levels of their main nutrients.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"19 1","pages":"99"},"PeriodicalIF":5.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251333/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chinese MedicinePub Date : 2024-07-15DOI: 10.1186/s13020-024-00968-0
Bojiao Ding, Li Jiang, Na Zhang, Li Zhou, Huiying Luo, Haiqing Wang, Xuetong Chen, Yuxin Gao, Zezhou Zhao, Chao Wang, Zhenzhong Wang, Zihu Guo, Yonghua Wang
{"title":"Santalum album L. alleviates cardiac function injury in heart failure by synergistically inhibiting inflammation, oxidative stress and apoptosis through multiple components.","authors":"Bojiao Ding, Li Jiang, Na Zhang, Li Zhou, Huiying Luo, Haiqing Wang, Xuetong Chen, Yuxin Gao, Zezhou Zhao, Chao Wang, Zhenzhong Wang, Zihu Guo, Yonghua Wang","doi":"10.1186/s13020-024-00968-0","DOIUrl":"10.1186/s13020-024-00968-0","url":null,"abstract":"<p><strong>Background: </strong>Heart failure (HF) is a complex cardiovascular syndrome with high mortality. Santalum album L. (SAL) is a traditional Chinese medicine broadly applied for various diseases treatment including HF. However, the potential active compounds and molecular mechanisms of SAL in HF treatment are not well understood.</p><p><strong>Methods: </strong>The active compounds and possible mechanisms of action of SAL were analyzed and validated by a systems pharmacology framework and an ISO-induced mouse HF model.</p><p><strong>Results: </strong>We initially confirmed that SAL alleviates heart damage in ISO-induced HF model. A total of 17 potentially active components in SAL were identified, with Luteolin (Lut) and Syringaldehyde (SYD) in SAL been identified as the most effective combination through probabilistic ensemble aggregation (PEA) analysis. These compounds, individually and in their combination (COMB), showed significant therapeutic effects on HF by targeting multiple pathways involved in anti-oxidation, anti-inflammation, and anti-apoptosis. The active ingredients in SAL effectively suppressed inflammatory mediators and pro-apoptotic proteins while enhancing the expression of anti-apoptotic factors and antioxidant markers. Furthermore, the synergistic effects of SAL on YAP and PI3K-AKT signaling pathways were further elucidated.</p><p><strong>Conclusions: </strong>Mechanistically, the anti-HF effect of SAL is responsible for the synergistic effect of anti-inflammation, antioxidation and anti-apoptosis, delineating a multi-targeted therapeutic strategy for HF.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"19 1","pages":"98"},"PeriodicalIF":5.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pharmacological activity and clinical application analysis of traditional Chinese medicine ginger from the perspective of one source and multiple substances.","authors":"Cheng Zhang, Anyang Rao, Cui Chen, Yuqing Li, Xiuchi Tan, Jiaxin Long, Xinyue Wang, Junjie Cai, Jiquan Huang, Hua Luo, Chuwen Li, Yuanye Dang","doi":"10.1186/s13020-024-00969-z","DOIUrl":"10.1186/s13020-024-00969-z","url":null,"abstract":"<p><p>All types of ginger have common fundamental components, although they possess distinct strengths and inclinations when it comes to effectiveness and medicinal applications. Fresh ginger possesses the ability to effectively stimulate movement within the body, alleviate the act of vomiting, induce sweating, and provide relief for external syndromes. Dried ginger possesses both defensive and stimulant characteristics, which effectively raise the internal temperature and enhance the Yang energy. Fresh ginger is more hydrating than dried ginger, highly skilled at heating the Middle-jiao, alleviating pain, halting bleeding, and managing diarrhea. Dried ginger possesses the ability to alleviate coldness when consumed in a heated form, as well as to alleviate diarrhea when consumed in a heated form. It thrives in warm conditions and has a tendency to revert back to its warm nature. The moisture content of baked ginger is inferior to that of dried ginger, but it is highly effective in alleviating pain, bleeding, and diarrhea by warming the Middle-jiao. Ginger charcoal and stir-fried charcoal, produced through carbonization, have excellent heat retention properties and are effective in warming meridians and stopping bleeding. The potency and ability to spread of roasted ginger is less intense compared to fresh ginger, and its moisture content is not as low as that of dried ginger. The medicinal characteristics of this substance are gentle, making it beneficial for alleviating vomiting in patients who are physically frail. Its primary mode of action is on the Middle-jiao. Nevertheless, the main chemical compositions of various traditional Chinese medicines are nearly identical due to their shared base element. Ginger, in particular, possesses a range of pharmacological activities including antioxidant, anti-inflammatory, anti-tumor, anti-bacterial, and anticoagulant properties. However, modern pharmacological research has not fully acknowledged the clinical medicinal value of ginger and consequently, fails to provide accurate guidance for clinical medication. This situation has a negative impact on the contemporary advancement of traditional Chinese medicine (TCM). The research on modernizing ginger is conducted by analyzing and considering the prospects. It is based on Traditional Chinese Medicine (TCM) theory and incorporates the comprehensive perspective of TCM philosophy. In order to modernize ginger, it is essential to have a proper knowledge of the concepts of \"recognizing nature by efficacy, homology, and mutual expression of nature and efficacy\" and \"rationally utilizing modern drug research technology\". By applying these principles, we can construct a bridge towards the advancement of ginger.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"19 1","pages":"97"},"PeriodicalIF":5.3,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11241951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141598777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of 3D bioprinting technology apply to assessing Dangguiniantongtang (DGNT) decoctions in arthritis.","authors":"Zhichao Liang, Yunxi Han, Tao Chen, Jinwu Wang, Kaili Lin, Luying Yuan, Xuefei Li, Hao Xu, Tengteng Wang, Yang Liu, Lianbo Xiao, Qianqian Liang","doi":"10.1186/s13020-024-00948-4","DOIUrl":"10.1186/s13020-024-00948-4","url":null,"abstract":"<p><p>The aim of this study was to develop a three-dimensional (3D) cell model in order to evaluate the effectiveness of a traditional Chinese medicine decoction in the treatment of arthritis. Chondrocytes (ATDC5) and osteoblasts (MC3T3-E1) were 3D printed separately using methacryloyl gelatin (GelMA) hydrogel bioinks to mimic the natural 3D cell environment. Both cell types showed good biocompatibility in GelMA. Lipopolysaccharide (LPS) was added to the cell models to create inflammation models, which resulted in increased expression of inflammatory factors IL-1β, TNF-α, iNOS, and IL-6, and decreased expression of cell functional genes such as Collagen II (COLII), transcription factor SOX-9 (Sox9), Aggrecan, alkaline phosphatase (ALP), RUNX family transcription factor 2 (Runx2), Collagen I (COLI), Osteopontin (OPN), and bone morphogenetic protein-2 (BMP-2). The created inflammation model was then used to evaluate the effectiveness of Dangguiniantongtang (DGNT) decoctions. The results showed that DGNT reduced the expression of inflammatory factors and increased the expression of functional genes in the cell model. In summary, this study established a 3D cell model to assess the effectiveness of traditional Chinese medicine (TCM) decoctions, characterized the gene expression profile of the inflammatory state model, and provided a practical reference for future research on TCM efficacy evaluation for arthritis treatment.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"19 1","pages":"96"},"PeriodicalIF":5.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229348/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chinese MedicinePub Date : 2024-07-04DOI: 10.1186/s13020-024-00966-2
Seungmin Lee, In Gyoung Ju, Hyeyoon Eo, Jin Hee Kim, Yujin Choi, Myung Sook Oh
{"title":"Rhei Undulati Rhizoma attenuates memory decline and reduces amyloid-β induced neuritic dystrophy in 5xFAD mouse.","authors":"Seungmin Lee, In Gyoung Ju, Hyeyoon Eo, Jin Hee Kim, Yujin Choi, Myung Sook Oh","doi":"10.1186/s13020-024-00966-2","DOIUrl":"10.1186/s13020-024-00966-2","url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) is a common type of dementia characterized by amyloid-β (Aβ) accumulation, lysosomal dysfunction, and tau hyperphosphorylation, leading to neurite dystrophy and memory loss. This study aimed to investigate whether Rhei Undulati Rhizoma (RUR), which has been reported to have anti-neuroinflammatory effect, attenuates Aβ-induced memory impairment, neuritic dystrophy, and tau hyperphosphorylation, and to reveal its mode of action.</p><p><strong>Methods: </strong>Five-month-old 5xFAD mice received RUR (50 mg/kg) orally for 2 months. The Y-maze test was used to assess working memory. After behavioral testing, brain tissue was analyzed using thioflavin S staining, western blotting, and immunofluorescence staining to investigate the mode of action of RUR. To confirm whether RUR directly reduces Aβ aggregation, a thioflavin T assay and dot blot were performed after incubating Aβ with RUR.</p><p><strong>Results: </strong>RUR administration attenuated the Aβ-induced memory impairment in 5xFAD mice. Furthermore, decreased accumulation of Aβ was observed in the hippocampus of the RUR-treated 5xFAD group compare to the vehicle-treated 5xFAD group. Moreover, RUR reduced the dystrophic neurites (DNs) that accumulate impaired endolysosomal organelles around Aβ. In particular, RUR treatment downregulated the expression of β-site amyloid precursor protein cleaving enzyme 1 and the hyperphosphorylation of tau within DNs. Additionally, RUR directly suppressed the aggregation of Aβ, and eliminated Aβ oligomers in vitro.</p><p><strong>Conclusions: </strong>This study showed that RUR could attenuate Aβ-induced pathology and directly regulate the aggregation of Aβ. These results suggest that RUR could be an efficient material for AD treatment through Aβ regulation.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"19 1","pages":"95"},"PeriodicalIF":5.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}