Chinese Medicine最新文献

筛选
英文 中文
Mechanism of norcantharidin intervention in gastric cancer: analysis based on antitumor proprietary Chinese medicine database, network pharmacology, and transcriptomics 去甲斑蝥素干预胃癌的机制:基于抗肿瘤中成药数据库、网络药理学和转录组学的分析
IF 4.9 3区 医学
Chinese Medicine Pub Date : 2024-09-17 DOI: 10.1186/s13020-024-01000-1
Yiyan Zhai, Fanqin Zhang, Jiying Zhou, Chuanqi Qiao, Zhengsen Jin, Jingyuan Zhang, Chao Wu, Rui Shi, Jiaqi Huang, Yifei Gao, Siyu Guo, Haojia Wang, Keyan Chai, Xiaomeng Zhang, Tieshan Wang, Xiaoguang Sheng, Xinkui Liu, Jiarui Wu
{"title":"Mechanism of norcantharidin intervention in gastric cancer: analysis based on antitumor proprietary Chinese medicine database, network pharmacology, and transcriptomics","authors":"Yiyan Zhai, Fanqin Zhang, Jiying Zhou, Chuanqi Qiao, Zhengsen Jin, Jingyuan Zhang, Chao Wu, Rui Shi, Jiaqi Huang, Yifei Gao, Siyu Guo, Haojia Wang, Keyan Chai, Xiaomeng Zhang, Tieshan Wang, Xiaoguang Sheng, Xinkui Liu, Jiarui Wu","doi":"10.1186/s13020-024-01000-1","DOIUrl":"https://doi.org/10.1186/s13020-024-01000-1","url":null,"abstract":"Combining antitumor proprietary Chinese medicine (pCm) with radiotherapy and chemotherapy can effectively improve tumor cure rates and enhance patients’ quality of life. Gastric cancer (GC) severely endangers public health. Despite satisfactory therapeutic effects achieved by using antitumor pCm to treat GC, its underlying mechanism remains unclear. To integrate existing research data, construct a database of antitumor pCm, and study the intervention mechanisms in GC by focusing on their monomer components. We constructed an antitumor pCm database based on China’s medical insurance catalog, and employed network pharmacology, molecular docking methods, cell experiments, transcriptomics, and bioinformatics to investigate the intervention mechanisms of effective pCm components for GC. The study built an antitumor pCm database including 55 pCms, 171 Chinese herbal medicines, 1955 chemical components, 2104 targets, and 32 disease information. Network pharmacology and molecular docking technology identified norcantharidin as an effective component of antitumor pCm. In vitro experiments showed that norcantharidin effectively inhibited GC cell proliferation, migration, and invasion; blocked the G2/M cell cycle phase; and induced GC cell apoptosis. Transcriptomic results revealed that norcantharidin affected biological processes, such as cell adhesion, migration, and inflammatory responses by influencing PI3K-AKT, NF-κB, JAK-STAT, TNF-α signaling pathways, and EMT-related pathways. Core molecules of norcantharidin involved in GC intervention include SERPINE1, SHOX2, SOX4, PRDM1, TGFR3, TOX, PAX9, IL2RB, LAG3, and IL15RA. Additionally, the key target SERPINE1 was identified using bioinformatics methods. Norcantharidin, as an effective component of anti-tumor pCm, exerts its therapeutic effects on GC by influencing biological processes such as cell adhesion, migration, and inflammation. This study provides a foundation and research strategy for the post-marketing re-evaluation of antitumor pCms.","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"188 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The improvement of modified Si-Miao granule on hepatic insulin resistance and glycogen synthesis in type 2 diabetes mellitus involves the inhibition of TNF-α/JNK1/IRS-2 pathway: network pharmacology, molecular docking, and experimental validation 改良四妙颗粒对2型糖尿病肝脏胰岛素抵抗和糖原合成的改善涉及TNF-α/JNK1/IRS-2通路的抑制:网络药理学、分子对接和实验验证
IF 4.9 3区 医学
Chinese Medicine Pub Date : 2024-09-16 DOI: 10.1186/s13020-024-00997-9
Zebiao Cao, Xianzhe Wang, Zhili Zeng, Zhaojun Yang, Yuping Lin, Lu Sun, Qiyun Lu, Guanjie Fan
{"title":"The improvement of modified Si-Miao granule on hepatic insulin resistance and glycogen synthesis in type 2 diabetes mellitus involves the inhibition of TNF-α/JNK1/IRS-2 pathway: network pharmacology, molecular docking, and experimental validation","authors":"Zebiao Cao, Xianzhe Wang, Zhili Zeng, Zhaojun Yang, Yuping Lin, Lu Sun, Qiyun Lu, Guanjie Fan","doi":"10.1186/s13020-024-00997-9","DOIUrl":"https://doi.org/10.1186/s13020-024-00997-9","url":null,"abstract":"Modified Si-Miao granule (mSMG), a traditional Chinese medicine, is beneficial for T2DM and insulin resistance (IR), but the underlying mechanism remains unknown. Using network pharmacology, we screened the compounds of mSMG and identified its targets and pathway on hepatic IR in T2DM. Using molecular docking, we identified the affinity between the compounds and hub target TNF-α. Then these were verified in KK-Ay mice and HepG2 cells. 50 compounds and 170 targets of mSMG against IR in T2DM were screened, and 9 hub targets such as TNF and MAPK8 were identified. 170 targets were mainly enriched in insulin resistance and TNF pathway, so we speculated that mSMG might act on TNF-α, JNK1 and then regulate insulin signaling to mitigate IR. Experimental validation proved that mSMG ameliorated hyperglycemia, IR, and TNF-α, enhanced glucose consumption and glycogen synthesis, relieved the phosphorylation of JNK1 and IRS-2 (Ser388), and elevated the phosphorylation of Akt (Ser473) and GSK-3β (Ser9) and GLUT2 expression in KK-Ay mice. Molecular docking further showed berberine from mSMG had excellent binding capacity with TNF-α. Then, in vitro validation experiments, we found that 20% mSMG-MS or 50 μM berberine had little effect in IR-HepG2 cell viability, but significantly increased glucose consumption and glycogen synthesis and regulated TNF-α/JNK1/IRS-2 pathway. Network pharmacology and molecular docking help us predict potential mechanism of mSMG and further guide experimental validation. mSMG and its representative compound berberine improve hepatic IR and glycogen synthesis, and its mechanism may be related to the inhibition of TNF-α/JNK1/IRS-2 pathway.","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"11 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-assisted rapid determination for traditional Chinese Medicine Constitution 机器学习辅助快速确定中药配方
IF 4.9 3区 医学
Chinese Medicine Pub Date : 2024-09-15 DOI: 10.1186/s13020-024-00992-0
Wen Sun, Minghua Bai, Ji Wang, Bei Wang, Yixing Liu, Qi Wang, Dongran Han
{"title":"Machine learning-assisted rapid determination for traditional Chinese Medicine Constitution","authors":"Wen Sun, Minghua Bai, Ji Wang, Bei Wang, Yixing Liu, Qi Wang, Dongran Han","doi":"10.1186/s13020-024-00992-0","DOIUrl":"https://doi.org/10.1186/s13020-024-00992-0","url":null,"abstract":"The aim of this study was to develop a machine learning-assisted rapid determination methodology for traditional Chinese Medicine Constitution. Based on the Constitution in Chinese Medicine Questionnaire (CCMQ), the most applied diagnostic instrument for assessing individuals’ constitutions, we employed automated supervised machine learning algorithms (i.e., Tree-based Pipeline Optimization Tool; TPOT) on all the possible item combinations for each subscale and an unsupervised machine learning algorithm (i.e., variable clustering; varclus) on the whole scale to select items that can best predict body constitution (BC) classifications or BC scores. By utilizing subsets of items selected based on TPOT and corresponding machine learning algorithms, the accuracies of BC classifications prediction ranged from 0.819 to 0.936, with the root mean square errors of BC scores prediction stabilizing between 6.241 and 9.877. Overall, the results suggested that the automated machine learning algorithms performed better than the varclus algorithm for item selection. Additionally, based on an automated machine learning item selection procedure, we provided the top three ranked item combinations with each possible subscale length, along with their corresponding algorithms for predicting BC classification and severity. This approach could accommodate the needs of different practitioners in traditional Chinese medicine for rapid constitution determination.","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"33 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Buqi-Huoxue-Tongnao decoction drives gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis 布芪黄芩汤通过肠脑轴驱动肠道微生物群衍生的吲哚乳酸减轻缺血性中风
IF 4.9 3区 医学
Chinese Medicine Pub Date : 2024-09-15 DOI: 10.1186/s13020-024-00991-1
Yarui Liu, Peng Zhao, Zheng Cai, Peishi He, Jiahan Wang, Haoqing He, Zhibo Zhu, Xiaowen Guo, Ke Ma, Kang Peng, Jie Zhao
{"title":"Buqi-Huoxue-Tongnao decoction drives gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis","authors":"Yarui Liu, Peng Zhao, Zheng Cai, Peishi He, Jiahan Wang, Haoqing He, Zhibo Zhu, Xiaowen Guo, Ke Ma, Kang Peng, Jie Zhao","doi":"10.1186/s13020-024-00991-1","DOIUrl":"https://doi.org/10.1186/s13020-024-00991-1","url":null,"abstract":"Ischemic stroke belongs to “apoplexy” and its pathogenesis is characterized by qi deficiency and blood stasis combining with phlegm-damp clouding orifices. Buqi-Huoxue-Tongnao decoction (BHTD) is a traditional Chinese medicine formula for qi deficiency, blood stasis and phlegm obstruction syndrome. However, its efficacy and potential mechanism on ischemic stroke are still unclear. This study aims to investigate the protective effect and potential mechanism of BHTD against ischemic stroke. Middle cerebral artery occlusion (MCAO) surgery was carried out to establish an ischemic stroke model in rats. Subsequently, the rats were gavaged with different doses of BHTD (2.59, 5.175, 10.35 g/kg) for 14 days. The protective effects of BHTD on the brain and gut were evaluated by neurological function scores, cerebral infarction area, levels of brain injury markers (S-100B, NGB), indicators of gut permeability (FD-4) and bacterial translocation (DAO, LPS, D-lactate), and tight junction proteins (Occludin, Claudin-1, ZO-1) in brain and colon. 16S rRNA gene sequencing and metabolomic analysis were utilized to analyze the effects on gut microecology and screen for marker metabolites to explore potential mechanisms of BHTD protection against ischemic stroke. BHTD could effectively mitigate brain impairment, including reducing neurological damage, decreasing cerebral infarction and repairing the blood–brain barrier, and BHTD showed the best effect at the dose of 10.35 g/kg. Moreover, BHTD reversed gut injury induced by ischemic stroke, as evidenced by decreased intestinal permeability, reduced intestinal bacterial translocation, and enhanced intestinal barrier integrity. In addition, BHTD rescued gut microbiota dysbiosis by increasing the abundance of beneficial bacteria, including Turicibacter and Faecalibaculum. Transplantation of the gut microbiota remodeled by BHTD into ischemic stroke rats recapitulated the protective effects of BHTD. Especially, BHTD upregulated tryptophan metabolism, which promoted gut microbiota to produce more indole lactic acid (ILA). Notably, supplementation with ILA by gavage could alleviate stroke injury, which suggested that driving the production of ILA in the gut might be a novel treatment for ischemic stroke. BHTD could increase gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis. Our current finding provides evidence that traditional Chinese medicine can ameliorate central diseases through regulating the gut microbiology.","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"33 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DMDD, isolated from Averrhoa carambola L., ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress-autophagy crosstalk 通过调节内质网应激与自噬的相互关系,从苌弘树中分离出的 DMDD 可改善糖尿病肾病
IF 4.9 3区 医学
Chinese Medicine Pub Date : 2024-09-12 DOI: 10.1186/s13020-024-00993-z
Jianmei Shi, Yuxiang Wang, Tao Liang, Xixi Wang, Jingxiao Xie, Renbin Huang, Xiaohui Xu, Xiaojie Wei
{"title":"DMDD, isolated from Averrhoa carambola L., ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress-autophagy crosstalk","authors":"Jianmei Shi, Yuxiang Wang, Tao Liang, Xixi Wang, Jingxiao Xie, Renbin Huang, Xiaohui Xu, Xiaojie Wei","doi":"10.1186/s13020-024-00993-z","DOIUrl":"https://doi.org/10.1186/s13020-024-00993-z","url":null,"abstract":"Studies have shown that Averrhoa carambola L. possesses therapeutic potential for diabetes and related complications. However, the specific beneficial effects and molecular mechanisms of 2-dodecyl-6-meth-oxycyclohexa-2,5-diene-1,4-dione (DMDD) isolated from Averrhoa carambola L. on diabetic nephropathy (DN) require further investigation. 80 C57BL/6 J male mice were subjected to a 1-week adaptive feeding, followed by a high-fat diet and intraperitoneal injection of 100 mg/kg streptozotocin (STZ) to construct an in vivo DN model. Additionally, human renal proximal tubular epithelial cells (HK-2) induced by high glucose (HG) were used as an in vitro DN model. The expression levels of epithelial-mesenchymal transition (EMT), endoplasmic reticulum stress (ERS), and autophagy-related proteins in renal tubular cells were detected by Western Blot, flow cytometry, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) staining. Transcriptome analysis revealed was conducted to elucidate the specific mechanism of by which DMDD mitigates DN by inhibiting ERS and autophagy. HK-2 cells were transfected with IRE1α overexpression lentivirus to reveal the role of IRE1α overexpression in HG-induced HK-2. The experimental data showed that DMDD significantly reduced blood glucose levels and improved renal pathological alterations in DN mice. Additionally, DMDD inhibited the calcium (Ca2+) pathway, manifested by decreased autophagosome formation and downregulation of LC3II/I, Beclin-1, and ATG5 expression. Moreover, in HG-induced HK-2 cells, DMDD suppressed the overexpression of GRP78, CHOP, LC3II/I, Beclin1, and ATG5. Notably, IRE1α overexpression significantly increased autophagy incidence; however, DMDD treatment subsequently reduced the expression of LC3II/I, Beclin1, and ATG5. DMDD effectively inhibits excessive ERS and autophagy, thereby reducing renal cell apoptosis through the IRE1α pathway and Ca 2+ pathway.","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"4 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calculating the similarity between prescriptions to find their new indications based on graph neural network 基于图神经网络计算处方之间的相似性,以找到其新适应症
IF 4.9 3区 医学
Chinese Medicine Pub Date : 2024-09-11 DOI: 10.1186/s13020-024-00994-y
Xingxing Han, Xiaoxia Xie, Ranran Zhao, Yu Li, Pengzhen Ma, Huan Li, Fengming Chen, Yufeng Zhao, Zhishu Tang
{"title":"Calculating the similarity between prescriptions to find their new indications based on graph neural network","authors":"Xingxing Han, Xiaoxia Xie, Ranran Zhao, Yu Li, Pengzhen Ma, Huan Li, Fengming Chen, Yufeng Zhao, Zhishu Tang","doi":"10.1186/s13020-024-00994-y","DOIUrl":"https://doi.org/10.1186/s13020-024-00994-y","url":null,"abstract":"Drug repositioning has the potential to reduce costs and accelerate the rate of drug development, with highly promising applications. Currently, the development of artificial intelligence has provided the field with fast and efficient computing power. Nevertheless, the repositioning of traditional Chinese medicine (TCM) is still in its infancy, and the establishment of a reasonable and effective research method is a pressing issue that requires urgent attention. The use of graph neural network (GNN) to compute the similarity between TCM prescriptions to develop a method for finding their new indications is an innovative attempt. This paper focused on traditional Chinese medicine prescriptions containing ephedra, with 20 prescriptions for treating external cough and asthma taken as target prescriptions. The remaining 67 prescriptions containing ephedra were taken as to-be-matched prescriptions. Furthermore, a multitude of data pertaining to the prescriptions, including diseases, disease targets, symptoms, and various types of information on herbs, was gathered from a diverse array of literature sources, such as Chinese medicine databases. Then, cosine similarity and Jaccard coefficient were calculated to characterize the similarity between prescriptions using graph convolutional network (GCN) with a self-supervised learning method, such as deep graph infomax (DGI). A total of 1340 values were obtained for each of the two calculation indicators. A total of 68 prescription pairs were identified after screening with 0.77 as the threshold for cosine similarity. Following the removal of false positive results, 12 prescription pairs were deemed to have further research value. A total of 5 prescription pairs were screened using a threshold of 0.50 for the Jaccard coefficient. However, the specific results did not exhibit significant value for further use, which may be attributed to the excessive variety of information in the dataset. The proposed method can provide reference for finding new indications of target prescriptions by quantifying the similarity between prescriptions. It is expected to offer new insights for developing a scientific and systematic research methodology for traditional Chinese medicine repositioning.","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"28 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of omics technologies in studies on antitumor effects of Traditional Chinese Medicine 在中药抗肿瘤作用研究中应用全息技术
IF 4.9 3区 医学
Chinese Medicine Pub Date : 2024-09-09 DOI: 10.1186/s13020-024-00995-x
Peng Tan, Xuejiao Wei, Huiming Huang, Fei Wang, Zhuguo Wang, Jinxin Xie, Longyan Wang, Dongxiao Liu, Zhongdong Hu
{"title":"Application of omics technologies in studies on antitumor effects of Traditional Chinese Medicine","authors":"Peng Tan, Xuejiao Wei, Huiming Huang, Fei Wang, Zhuguo Wang, Jinxin Xie, Longyan Wang, Dongxiao Liu, Zhongdong Hu","doi":"10.1186/s13020-024-00995-x","DOIUrl":"https://doi.org/10.1186/s13020-024-00995-x","url":null,"abstract":"Traditional Chinese medicine (TCM) is considered to be one of the most comprehensive and influential form of traditional medicine. It plays an important role in clinical treatment and adjuvant therapy for cancer. However, the complex composition of TCM presents challenges to the comprehensive and systematic understanding of its antitumor mechanisms, which hinders further development of TCM with antitumor effects. Omics technologies can immensely help in elucidating the mechanism of action of drugs. They utilize high-throughput sequencing and detection techniques to provide deeper insights into biological systems, revealing the intricate mechanisms through which TCM combats tumors. Multi-omics approaches can be used to elucidate the interrelationships among different omics layers by integrating data from various omics disciplines. By analyzing a large amount of data, these approaches further unravel the complex network of mechanisms underlying the antitumor effects of TCM and explain the mutual regulations across different molecular levels. In this study, we presented a comprehensive overview of the recent progress in single-omics and multi-omics research focused on elucidating the mechanisms underlying the antitumor effects of TCM. We discussed the significance of omics technologies in advancing research on the antitumor properties of TCM and also provided novel research perspectives and methodologies for further advancing this research field.","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"72 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening of herbal extracts binding with vascular endothelial growth factor by applying HerboChip platform 应用 HerboChip 平台筛选与血管内皮生长因子结合的草药提取物
IF 4.9 3区 医学
Chinese Medicine Pub Date : 2024-09-09 DOI: 10.1186/s13020-024-00987-x
Yang Liu, Jia-Ming Liang, Guo-Xia Guo, Yu-Huan Qiu, Le-Le Yu, Karl Wah-Keung Tsim, Qi-Wei Qin, Gallant Kar-Lun Chan, Wei-Hui Hu
{"title":"Screening of herbal extracts binding with vascular endothelial growth factor by applying HerboChip platform","authors":"Yang Liu, Jia-Ming Liang, Guo-Xia Guo, Yu-Huan Qiu, Le-Le Yu, Karl Wah-Keung Tsim, Qi-Wei Qin, Gallant Kar-Lun Chan, Wei-Hui Hu","doi":"10.1186/s13020-024-00987-x","DOIUrl":"https://doi.org/10.1186/s13020-024-00987-x","url":null,"abstract":"Traditional Chinese medicine (TCM) has been hailed as a rich source of medicine, but many types of herbs and their functions still need to be rapidly discovered and elucidated. HerboChip, a target-based drug screening platform, is an array of different fractions deriving from herbal extracts. This study was designed to identify effective components from TCM that interact with vascular endothelial growth factor (VEGF) as a target using HerboChip. Selected TCMs that are traditionally used as remedies for cancer prevention and wound healing were determined and extracted with 50% ethanol. Biotinylated-VEGF was hybridized with over 500 chips coated with different HPLC-separated fractions from TCM extracts and straptavidin-Cy5 was applied to identify plant extracts containing VEGF-binding fractions. Cytotoxicity of selected herbal extracts and their activities on VEGF-mediated angiogenic functions were evaluated. Over 500 chips were screened within a week, and ten positive hits were identified. The interaction of the identified herbal extracts with VEGF was confirmed in cultured endothelial cells. The identified herbs promoted or inhibited VEGF-mediated cell proliferation, migration and tube formation. Results from western blotting analysis demonstrated the identified herbal extracts significantly affected VEGF-triggered phosphorylations of eNOS, Akt and Erk. Five TCMs demonstrated potentiating activities on the VEGF response and five TCMs revealed suppressive activities. The current results demonstrated the applicability of the HerboChip platform and systematically elucidated the activity of selected TCMs on angiogenesis and its related signal transduction mechanisms.","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"25 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncover the anticancer potential of lycorine. 揭示番茄红素的抗癌潜力
IF 5.3 3区 医学
Chinese Medicine Pub Date : 2024-09-08 DOI: 10.1186/s13020-024-00989-9
Yan-Ming Zhang, Ting Li, Chun-Cao Xu, Jia-Yu Qian, Hongwei Guo, Xiaolei Zhang, Zha-Jun Zhan, Jin-Jian Lu
{"title":"Uncover the anticancer potential of lycorine.","authors":"Yan-Ming Zhang, Ting Li, Chun-Cao Xu, Jia-Yu Qian, Hongwei Guo, Xiaolei Zhang, Zha-Jun Zhan, Jin-Jian Lu","doi":"10.1186/s13020-024-00989-9","DOIUrl":"10.1186/s13020-024-00989-9","url":null,"abstract":"<p><strong>Background: </strong>Natural products have a long history in drug discovery. Lycorine is an alkaloid derived from Amaryllidaceae plants, demonstrating significant pharmacological potential. Lycorine and its hydrochloride salt, lycorine hydrochloride, have shown outstanding anticancer effects both in vitro and in vivo.</p><p><strong>Purpose: </strong>This review aims to comprehensively summarize recent research advancements regarding the anticancer potential of lycorine and lycorine hydrochloride. It intends to elucidate current research limitations, optimization strategies, and future research directions to guide clinical translation.</p><p><strong>Methods: </strong>Various databases, e.g., Web of Science, PubMed, and Chinese National Knowledge Infrastructure, are systematically searched for relevant articles using keywords such as lycorine, cancer, pharmacokinetics, and toxicity. The retrieved literature is then categorized and summarized to provide an overview of the research advancements in the anticancer potential of lycorine and lycorine hydrochloride.</p><p><strong>Results: </strong>Lycorine and lycorine hydrochloride demonstrate significant anticancer activities against various types of cancer both in vitro and in vivo, employing diverse mechanisms such as inducing cell cycle arrest, triggering cellular senescence, regulating programmed cell death, inhibiting angiogenesis, suppressing metastasis, and modulating immune system. Furthermore, pharmacokinetic profiles and toxicity data are summarized. Additionally, this review discusses the druggability, limitations, optimization strategies, and target identification of lycorine, offering insights for future preclinical studies.</p><p><strong>Conclusion: </strong>The anticancer effects and safety profile of lycorine and lycorine hydrochloride suggest promising potential for clinical applications. Further research on their in-depth mechanisms and optimization strategies targeting their limitations will enhance the understanding and druggability of lycorine and lycorine hydrochloride.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"19 1","pages":"121"},"PeriodicalIF":5.3,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382518/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting lipid droplets and lipid droplet-associated proteins: a new perspective on natural compounds against metabolic diseases. 针对脂滴和脂滴相关蛋白:天然化合物防治代谢疾病的新视角。
IF 5.3 3区 医学
Chinese Medicine Pub Date : 2024-09-04 DOI: 10.1186/s13020-024-00988-w
Xinyue Jiang, Hongzhan Wang, Kexin Nie, Yang Gao, Shen Chen, Yueheng Tang, Zhi Wang, Hao Su, Hui Dong
{"title":"Targeting lipid droplets and lipid droplet-associated proteins: a new perspective on natural compounds against metabolic diseases.","authors":"Xinyue Jiang, Hongzhan Wang, Kexin Nie, Yang Gao, Shen Chen, Yueheng Tang, Zhi Wang, Hao Su, Hui Dong","doi":"10.1186/s13020-024-00988-w","DOIUrl":"10.1186/s13020-024-00988-w","url":null,"abstract":"<p><strong>Background: </strong>Lipid droplet (LD) is a metabolically active organelle, which changes dynamically with the metabolic state and energy requirements of cells. Proteins that either insert into the LD phospholipid monolayer or are present in the cytoplasm, playing a crucial role in lipid homeostasis and signaling regulation, are known as LD-associated proteins.</p><p><strong>Methods: </strong>The keywords \"lipid droplets\" and \"metabolic diseases\" were used to obtain literature on LD metabolism and pathological mechanism. After searching databases including Scopus, OVID, Web of Science, and PubMed from 2013 to 2024 using terms like \"lipid droplets\", \"lipid droplet-associated proteins\", \"fatty liver disease\", \"diabetes\", \"diabetic kidney disease\", \"obesity\", \"atherosclerosis\", \"hyperlipidemia\", \"natural drug monomers\" and \"natural compounds\", the most common natural compounds were identified in about 954 articles. Eventually, a total of 91 studies of 10 natural compounds reporting in vitro or in vivo studies were refined and summarized.</p><p><strong>Results: </strong>The most frequently used natural compounds include Berberine, Mangostin, Capsaicin, Caffeine, Genistein, Epigallocatechin-3-gallate, Chlorogenic acid, Betaine, Ginsenoside, Resveratrol. These natural compounds interact with LD-associated proteins and help ameliorate abnormal LDs in various metabolic diseases.</p><p><strong>Conclusion: </strong>Natural compounds involved in the regulation of LDs and LD-associated proteins hold promise for treating metabolic diseases. Further research into these interactions may lead to new therapeutic applications.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"19 1","pages":"120"},"PeriodicalIF":5.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信